利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling。

首先看下max pooling的具体操作:整个图片被不重叠的分割成若干个同样大小的小块(pooling size)。每个小块内只取最大的数字,再舍弃其他节点后,保持原有的平面结构得出 output。

相应的,对于多个feature map,操作如下,原本64张224X224的图像,经过Max Pooling后,变成了64张112X112的图像,从而实现了downsampling的目的。

为什么可以这样?这里利用到一个特性:平移不变性(translation invariant),结论的公式证明还无从考证,不过从下面的实例可以侧面证明这点:

右上角为3副横折位置不一样的图像,分别同左上角的卷积核进行运算,然后再进行3X3大小池化操作以后,我们发现最后都能得到相同的识别结果。还有人更通俗理解卷积后再进行池化运算得到相同的结果,就好比牛逼的球队分到不同的组得到获得相同的比赛结果一样。

除了Max Pooling,还有一些其它的池化操作,例如:SUM pooling、AVE pooling、MOP pooling、CROW pooling和RMAC pooling等,这里不再进行介绍,见末尾参考文章链接。

下面利用tensorflow模块的max_pool函数,实现Max pooling操作:

# 导入tensorflow库
import tensorflow as tf # 定义2个行为4,列为4,通道为1的数据集
batches = 2
height = 4
width = 4
channes = 1 dataset = tf.Variable(
[
[
[[1.0],[2.0],[5.0],[6.0]],
[[3.0],[4.0],[7.0],[8.0]],
[[9.0],[10.0],[13.0],[14.0]],
[[11.0],[12.0],[15.0],[16.0]]
],
[
[[17.0],[18.0],[21.0],[22.0]],
[[19.0],[20.0],[23.0],[24.0]],
[[25.0],[26.0],[29.0],[30.0]],
[[27.0],[28.0],[31.0],[32.0]]
]
]) # 定义Max pooling操作运算,重点理解下ksize和strides两个参数的含义:
# ksize表示不同维度Max pooling的大小,由于batches和channels两个维度不需要进行Max pooling,所以为1
# strides表示下个Max pooling位置的跳跃大小,同理,由于batches和channels两个维度不需要进行Max pooling,所以为1
X = tf.placeholder(dtype="float",shape=[None,height,width,channes])
data_max_pool = tf.nn.max_pool(value=X,ksize=[1,2,2,1],strides=[1,2,2,1],padding="VALID") # 开始进行tensorflow计算图运算
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
input = sess.run(dataset)
output = sess.run(data_max_pool,feed_dict = {X:input})
print(input)
print("===============================")
print(output) # 输入:
# [
# [
# [[ 1.] [ 2.] [ 5.] [ 6.]]
# [[ 3.] [ 4.] [ 7.] [ 8.]]
# [[ 9.] [10.] [13.] [14.]]
# [[11.] [12.] [15.] [16.]]
# ]
#
# [
# [[17.] [18.] [21.] [22.]]
# [[19.] [20.] [23.] [24.]]
# [[25.] [26.] [29.] [30.]]
# [[27.] [28.] [31.] [32.]]
# ]
# ]
#
# ===============================
# 输出:
# [
# [
# [[ 4.] [ 8.]]
# [[12.] [16.]]
# ]
# [
# [[20.] [24.]]
# [[28.] [32.]]
# ]
# ]

参考文章:CNN中的maxpool到底是什么原理?

day-16 CNN卷积神经网络算法之Max pooling池化操作学习的更多相关文章

  1. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  2. CNN卷积神经网络在自然语言处理的应用

    摘要:CNN作为当今绝大多数计算机视觉系统的核心技术,在图像分类领域做出了巨大贡献.本文从计算机视觉的用例开始,介绍CNN及其在自然语言处理中的优势和发挥的作用. 当我们听到卷积神经网络(Convol ...

  3. cnn(卷积神经网络)比较系统的讲解

    本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之 ...

  4. 经典卷积神经网络算法(5):ResNet

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  5. CNN卷积神经网络详解

    前言   在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享.目前的计划如下(以下网络全部使用Pytorch搭建): 专题一:计算机视觉基础 介 ...

  6. [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR

    Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...

  7. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  8. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  9. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

随机推荐

  1. Reading Notes : 180213 计算机的硬件构成与处理流程

    读书<计算机组成原理>,<鸟哥的Linux私房菜基础篇> 基本上接触过计算机的人,都多少知道计算机的具体构成,但是真正能讲明白的却说了很多,本节将讲解一下计算机的基本硬件构成和 ...

  2. 环境配置之 Debug 和 Release - iOS

    便于开发.打包中在不同环境(测试.生产)间属性的切换更加方便便捷流畅,故创建设置此方式方法,希望对大家能有所帮助. 首先,创建 Configurations Setting File(.xcconfi ...

  3. CoacoaPods安装使与使用超级详细教程

    对于一个iOS开发的初学者来说,并不知道第三方类库的存在,知道了也不知道如何使用,那么下面便来介绍一下使用方法. iOS开发常用的第三方类库是GitHub:https://github.com/ 在上 ...

  4. 【模板】负环(spfa)

    题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 ...

  5. 异常笔记:Hadoop异常 namenode.NameNode: Encountered exception during format

    00:53:47,977 WARN namenode.NameNode: Encountered exception during format: java.io.IOException: Canno ...

  6. node的安装和配置

    一 . 直接安装node 1. http://nodejs.cn/download/ 根据自己的电脑选择适合的安装包 2.安装 , 无脑下一步 , 可以选择安装路径 , 但是一定要记住 . 3.命令行 ...

  7. $.extend() 合并问题

  8. api帮助文档的制作

    在java开发中,往往需要用到别人写的类或是自己写的类被别人拿去用. 而使用类的过程中,类中的方法对使用者而言并不完全透明,这个时候帮助文档可以让我们清楚的了解这个类中的方法该如何调用. 下面简述一下 ...

  9. 【Storm一】Storm安装部署

    storm安装部署 解压storm安装包 $ tar -zxvf apache-storm-1.1.0.tar.gz -C /usr/local/src 修改解压后的apache-storm-1.1. ...

  10. Python学习5——基本格式化输出

    整数的格式化输出 十进制.八进制.十六进制 num01 = 100 print("十进制输出:%d"%num01) print("八进制输出:%o"%num01 ...