#include ”stdio.h“ 
#include “conio.h” 
#include ”assert.h“ 
#include “stdlib.h” 
#define MAPMAXSIZE 100 //地图面积最大为 100x100 
#define MAXINT 8192 //定义一个最大整数, 地图上任意两点距离不会超过它 
#define STACKSIZE 65536 //保存搜索节点的堆栈大小

#define tile_num(x,y) ((y)*map_w+(x)) //将 x,y 坐标转换为地图上块的编号 
#define tile_x(n) ((n)%map_w) //由块编号得出 x,y 坐标 
#define tile_y(n) ((n)/map_w)

// 树结构, 比较特殊, 是从叶节点向根节点反向链接 
typedef struct node *TREE;

struct node { 
int h; 
int tile; 
TREE father; 
} ;

typedef struct node2 *LINK;

struct node2 { 
TREE node; 
int f; 
LINK next; 
};

LINK queue; // 保存没有处理的行走方法的节点 
TREE stack[STACKSIZE]; // 保存已经处理过的节点 (搜索完后释放) 
int stacktop; 
unsigned char map[MAPMAXSIZE][MAPMAXSIZE]; //地图数据 
int dis_map[MAPMAXSIZE][MAPMAXSIZE]; //保存搜索路径时,中间目标地最优解

int map_w,map_h; //地图宽和高 
int start_x,start_y,end_x,end_y; //地点,终点坐标

// 初始化队列 
void init_queue() 

queue=(LINK)malloc(sizeof(*queue)); 
queue->node=NULL; 
queue->f=-1; 
queue->next=(LINK)malloc(sizeof(*queue)); 
queue->next->f=MAXINT; 
queue->next->node=NULL; 
queue->next->next=NULL; 
}

// 待处理节点入队列, 依靠对目的地估价距离插入排序 
void enter_queue(TREE node,int f) 

LINK p=queue,father,q; 
while(f>p->f) { 
father=p; 
p=p->next; 
assert(p); 

q=(LINK)malloc(sizeof(*q)); 
assert(queue); 
q->f=f,q->node=node,q->next=p; 
father->next=q; 
}

// 将离目的地估计最近的方案出队列 
TREE get_from_queue() 

TREE bestchoice=queue->next->node; 
LINK next=queue->next->next; 
free(queue->next); 
queue->next=next; 
stack[stacktop++]=bestchoice; 
assert(stacktop<STACKSIZE); 
return bestchoice; 
}

// 释放栈顶节点 
void pop_stack() 

free(stack[--stacktop]); 
}

// 释放申请过的所有节点 
void freetree() 

int i; 
LINK p; 
for (i=0;i<stacktop;i++) 
free(stack); 
while (queue) { 
p=queue; 
free(p->node); 
queue=queue->next; 
free(p); 

}

// 估价函数,估价 x,y 到目的地的距离,估计值必须保证比实际值小 
int judge(int x,int y) 

int distance; 
distance=abs(end_x-x)+abs(end_y-y); 
return distance; 
}

// 尝试下一步移动到 x,y 可行否 
int trytile(int x,int y,TREE father) 

TREE p=father; 
int h; 
if (map[y][x]!=' ') return 1; // 如果 (x,y) 处是障碍,失败 
while (p) { 
if (x==tile_x(p->tile) && y==tile_y(p->tile)) return 1; //如果 (x,y) 曾经经过,失败 
p=p->father; 

h=father->h+1; 
if (h>=dis_map[y][x]) return 1; // 如果曾经有更好的方案移动到 (x,y) 失败 
dis_map[y][x]=h; // 记录这次到 (x,y) 的距离为历史最佳距离

// 将这步方案记入待处理队列 
p=(TREE)malloc(sizeof(*p)); 
p->father=father; 
p->h=father->h+1; 
p->tile=tile_num(x,y); 
enter_queue(p,p->h+judge(x,y)); 
return 0; 
}

// 路径寻找主函数 
void findpath(int *path) 

TREE root; 
int i,j; 
stacktop=0; 
for (i=0;i<map_h;i++) 
for (j=0;j<map_w;j++) 
dis_map[j]=MAXINT; 
init_queue(); 
root=(TREE)malloc(sizeof(*root)); 
root->tile=tile_num(start_x,start_y); 
root->h=0; 
root->father=NULL; 
enter_queue(root,judge(start_x,start_y)); 
for (;;) { 
int x,y,child; 
TREE p; 
root=get_from_queue(); 
if (root==NULL) { 
*path=-1; 
return; 

x=tile_x(root->tile); 
y=tile_y(root->tile); 
if (x==end_x && y==end_y) break; // 达到目的地成功返回

child=trytile(x,y-1,root); //尝试向上移动 
child&=trytile(x,y+1,root); //尝试向下移动 
child&=trytile(x-1,y,root); //尝试向左移动 
child&=trytile(x+1,y,root); //尝试向右移动 
if (child!=0) 
pop_stack(); // 如果四个方向均不能移动,释放这个死节点 
}

// 回溯树,将求出的最佳路径保存在 path[] 中 
for (i=0;root;i++) { 
path=root->tile; 
root=root->father; 

path=-1; 
freetree(); 
}

void printpath(int *path) 

int i; 
for (i=0;path>=0;i++) { 
gotoxy(tile_x(path)+1,tile_y(path)+1); 
cprintf("\xfe"); 

}

int readmap() 

FILE *f; 
int i,j; 
f=fopen("map.dat","r"); 
assert(f); 
fscanf(f,"%d,%d\n",&map_w,&map_h); 
for (i=0;i<map_h;i++) 
fgets(&map[0],map_w+1,f); 
fclose(f); 
start_x=-1,end_x=-1; 
for (i=0;i<map_h;i++) 
for (j=0;j<map_w;j++) { 
if (map[j]=='s') map[j]=' ',start_x=j,start_y=i; 
if (map[j]=='e') map[j]=' ',end_x=j,end_y=i; 

assert(start_x>=0 && end_x>=0); 
return 0; 
}

void showmap() 

int i,j; 
clrscr(); 
for (i=0;i<map_h;i++) { 
gotoxy(1,i+1); 
for (j=0;j<map_w;j++) 
if (map[j]!=' ') cprintf("\xdb"); 
else cprintf(" "); 

gotoxy(start_x+1,start_y+1); 
cprintf("s"); 
gotoxy(end_x+1,end_y+1); 
cprintf("e"); 
}

int main() 

int path[MAXINT]; 
readmap(); 
showmap(); 
getch(); 
findpath(path); 
printpath(path); 
getch(); 
return 0; 
}

A*算法的C语言实现的更多相关文章

  1. 魔方阵算法及C语言实现

    1 魔方阵概念 填充的,每一行.每一列.对角线之和均相等的方阵,阶数n = 3,4,5….魔方阵也称为幻方阵. 例如三阶魔方阵为: 魔方阵有什么的规律呢? 魔方阵分为奇幻方和偶幻方.而偶幻方又分为是4 ...

  2. 一个UUID生成算法的C语言实现 --- WIN32版本 .

    一个UUID生成算法的C语言实现——WIN32版本   cheungmine 2007-9-16   根据定义,UUID(Universally Unique IDentifier,也称GUID)在时 ...

  3. 无限大整数相加算法的C语言源代码

    忙里偷闲,终于完成了无限大整数相加算法的C语言代码,无限大整数相加算法的算法分析在这里. 500位的加法运行1000次,不打印结果的情况下耗时0.036秒,打印结果的情况下耗时16.285秒. 下面是 ...

  4. 数据结构算法集---C++语言实现

    //数据结构算法集---C++语言实现 //各种类都使用模版设计,可以对各种数据类型操作(整形,字符,浮点) /////////////////////////// // // // 堆栈数据结构 s ...

  5. 1164: 零起点学算法71——C语言合法标识符(存在问题)

    1164: 零起点学算法71——C语言合法标识符 Time Limit: 1 Sec  Memory Limit: 64 MB   64bit IO Format: %lldSubmitted: 10 ...

  6. 【最全】经典排序算法(C语言)

    算法复杂度比较: 算法分类 一.直接插入排序 一个插入排序是另一种简单排序,它的思路是:每次从未排好的序列中选出第一个元素插入到已排好的序列中. 它的算法步骤可以大致归纳如下: 从未排好的序列中拿出首 ...

  7. PID算法(c 语言)(转)

    PID算法(c 语言)(来自老外) #include <stdio.h> #include<math.h> //定义PID 的结构体 struct _pid { int pv; ...

  8. 一个UUID生成算法的C语言实现——WIN32版本

    源: 一个UUID生成算法的C语言实现——WIN32版本

  9. 排序算法总结(C语言版)

    排序算法总结(C语言版) 1.    插入排序 1.1     直接插入排序 1.2     Shell排序 2.    交换排序 2.1     冒泡排序 2.2     快速排序 3.    选择 ...

  10. matlab算法转为c语言注意事项

    matlab算法转为c语言后,影响c语言效率的关键在于multiword的产生,基于此会有multiword加减法和乘除法,极大消耗资源,减少甚至消除multiword很重要,需注意的是:算法中尽量减 ...

随机推荐

  1. C-重定向

    说实话,第一次接触重定向这一个概念,感觉是那么的神奇简洁不可思议…………………… freopen() 本来应该是打开的是文件指针,但是分配了指针,使她(亲切)指向了标准输入.输出.错误流. 用 法: ...

  2. JS 寻找孩子并打印路径

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 浅谈RFID电子标签封装技术

    1RFID技术概述 1.1RFID技术概念 RFID是RadioFrequencyIdentification的缩写,即射频识别技术,俗称电子标签.RFID射频识别是一种非接触式的自动识别技术,它通过 ...

  4. Microsoft 收购 Apiphany

    StevenMartinMS 2013 年 10 月 23 日上午 10:00 今天,我高兴地宣布我们收购了业界领先的 API 管理交付平台 - Apiphany. 应用程序可扩展性已经不算什么新鲜事 ...

  5. openstack之Glance

    一.Glance简介.基本概念: Glance是openstack项目中负责镜像管理的模块,其功能包括虚拟机镜像的查找.注册和检索等操作. Glance提供restful API可以查询虚拟机镜像的m ...

  6. 使用超链接跳转页面(GridView)

    1. the html markup <div> <asp:GridView ID=" OnPageIndexChanging="GridView1_PageIn ...

  7. Spring源码地址和相关介绍的网址

    Spring源码地址下载: https://github.com/spring-projects/spring-framework/tags >多图详解Spring框架的设计理念与设计模式:ht ...

  8. Cocos2d-x win7 + vs2010 配置图文详解(亲测)

    下载最新版的cocos2d-x.打开浏览器,输入cocos2d-x.org,然后选择Download,本教程写作时最新版本为cocos2d-1.01-x-0.9.1,具体下载位置如下图: 下载完之后, ...

  9. JavaSE学习总结第16天_集合框架2

      16.01 ArrayList存储字符串并遍历 ArrayList类概述:底层数据结构是数组,查询快,增删慢,线程不安全,效率高 ArrayList类是List 接口的大小可变数组的实现.实现了所 ...

  10. HTML5 总结-表单-表单元素

    HTML5 表单元素 HTML5 的新的表单元素: HTML5 拥有若干涉及表单的元素和属性. 本章介绍以下新的表单元素: datalist keygen output 浏览器支持 Input typ ...