cf509E Pretty Song
When Sasha was studying in the seventh grade, he started listening to music a lot. In order to evaluate which songs he likes more, he introduced the notion of the song's prettiness. The title of the song is a word consisting of uppercase Latin letters. The prettiness of the song is the prettiness of its title.
Let's define the simple prettiness of a word as the ratio of the number of vowels in the word to the number of all letters in the word.
Let's define the prettiness of a word as the sum of simple prettiness of all the substrings of the word.
More formally, let's define the function vowel(c) which is equal to 1, if c is a vowel, and to 0 otherwise. Let si be the i-th character of strings, and si..j be the substring of word s, staring at the i-th character and ending at the j-th character (sisi + 1... sj, i ≤ j).
Then the simple prettiness of s is defined by the formula:

The prettiness of s equals

Find the prettiness of the given song title.
We assume that the vowels are I, E, A, O, U, Y.
The input contains a single string s (1 ≤ |s| ≤ 5·105) — the title of the song.
Print the prettiness of the song with the absolute or relative error of at most 10 - 6.
IEAIAIO
28.0000000
BYOB
5.8333333
YISVOWEL
17.0500000
In the first sample all letters are vowels. The simple prettiness of each substring is 1. The word of length 7 has 28 substrings. So, theprettiness of the song equals to 28.
题意是把字符串变成01串,元音字母是1其他是0,然后一个子串[l,r]对答案的贡献是(s[r]-s[l-1])/(r-l+1),求答案
枚举分母k,那么答案就是Σ(s[k]-s[0]+s[k+1]-s[1]+...+s[n]-s[n-k+1])/k
令t[]是s的前缀和,那么答案就是Σ(t[n]-t[n-k+1]-t[k])/k
O(n)搞定了
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7fffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n;
char ch[1000010];
int a[1000010];
LL s[1000010],t[1000010];
double ans;
int main()
{
scanf("%s",ch+1);
n=strlen(ch+1);
for(int i=1;i<=n;i++)
a[i]=ch[i]=='A'||ch[i]=='E'||ch[i]=='I'||ch[i]=='O'||ch[i]=='U'||ch[i]=='Y';
for(int i=1;i<=n;i++)
{
s[i]=s[i-1]+a[i];
t[i]=t[i-1]+s[i];
}
for(int i=1;i<=n;i++)
{
ans+=(double)(t[n]-t[i-1]-t[n-i])/(i+0.0);
}
printf("%.6lf\n",ans);
}
cf509E Pretty Song的更多相关文章
随机推荐
- [Angular 2] A Simple Form in Angular 2
When you create a Form in Angular 2, you can easily get all the values from the Form using ControlGr ...
- Java Performance Optimization Tools and Techniques for Turbocharged Apps--reference
Java Performance Optimization by: Pierre-Hugues Charbonneau reference:http://refcardz.dzone.com/refc ...
- udp协议基础(转自疯狂java讲义)
第17章 网络编程 17.4 基于UDP协议的网络编程 UDP协议是一种不可靠的网络协议,它在通信实例的两端各建立一个Socket,但这两个Socket之间并没有虚拟链路,这两个Socket只是发 ...
- js进制转换
var n = 17; var n2 = n.toString(2); var n8 = "0" + n.toString(8); var n16 = "0x" ...
- easyui-tree绑定数据的几种方式
没想到easyui对json数据格式要求的那么严谨,折腾了半天 第一种直接使用标签方式,很容易就加载出来了: <ul class="easyui-tree"> < ...
- php5.3.3安装mongo扩展
/usr/bin/phpize./configure --with-php-config=/usr/bin/php-configmake && make install/usr/sbi ...
- ASP.NET中的MD5加密
新人冒泡,打今起在园子里算是开博了,先来写点关于基础性的东西 为以后的写其他的文章做准备. 今天就先来说说MD5加密与在ASP.NET中如何实现MD5加密. MD5加密简单的说就是把一段明文 通过某种 ...
- java中的final, finally, finalize的区别
final修饰符(关键字),如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承.因此一个类不能既被声明为abstract的,又被声明为final的.将变量或方法声明为fin ...
- SQL Server 和CLR集成
通过在 Microsoft SQL Server 中托管 CLR(称为 CLR 集成),可以在托管代码中编写存储过程.触发器.用户定义函数.用户定义类型和用户定义聚合函数. 因为托管代码在执行之前会编 ...
- 总结一下apply和call的异同点
call, apply都属于Function.prototype的一个方法,它是JavaScript引擎内在实现的,因为属于Function.prototype,所以每个Function对象实例,也就 ...