3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 30  Solved: 17
[Submit][Status]

Description

    约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K(O≤K<N)只牝牛.
    请计算一共有多少种排队的方法.所有牡牛可以看成是相同的,所有牝牛也一样.

Input

    一行,输入两个整数N和K.

Output

 
    一个整数,表示排队的方法数.

Sample Input

4 2

Sample Output

6
样例说明
6种方法分别是:牝牝牝牝,牡牝牝牝,牝牡牝牝,牝牝牡牝,牝牝牝牡,牡牝牝牡

HINT

 

Source

题解:
问题可以转化为 在n个数中去若干个数,使这些数两两的差都>k
刚开始想的是排列组合:
枚举取m个,
设取出的m个数为 a[1] a[2] a[3] a[...] a[m]
构造数列  a[1] a[2]-k a[3]-2*k  a[...]-...k  a[m]-(m-1)*k
则该数列 严格递增 且该数列的个数为 c(a[m]-(m-1)*k,m)
因为每不同取法从小到大排序之后还原上去可以得到不同的 a数组
然后就可以各种逆元+排列组合乱搞了
复杂度 n*logn
 
后来发现直接DP(递推)更简单?
设 f[i]表示取的最后一个数是i的方案数
则 f[i]=siama(f[j]) i-j>k
so easy!
看来有时候数学方法不一定比信息学方法好233333
代码:
 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 100000+5
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 5000011
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,k,f[maxn];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();k=read();
f[]=;
int sum=,ans=;
for1(i,n)
{
if(i>k+)sum=(sum+f[i-k-])%mod;
f[i]=sum;
ans=(ans+f[i])%mod;
}
printf("%d\n",ans);
return ;
}

BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛的更多相关文章

  1. BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(dp)

    题意     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K( ...

  2. bzoj3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——递推 / 组合数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 对于这种有点巧妙的递推还是总是没有思路... 设计一个状态 f[i] 表示第 i 位置 ...

  3. BZOJ 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛( dp )

    水题...忘了取模就没1A了.... --------------------------------------------------------------------------- #incl ...

  4. 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 243  Solved: 167[S ...

  5. BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学

    BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学 Description     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛, ...

  6. bzoj:3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛

    Description     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡 ...

  7. 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...

  8. bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...

  9. BZOJ 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3398 题意: 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡 ...

随机推荐

  1. 一个C++的多态和虚函数实例

    类的说明: code: #include<iostream> #include<string> #define PAI 3.1415926 using namespace st ...

  2. iOS CoreBluetooth 教程

    去App Store搜索并下载“LightBlue”这个App,对调试你的app和理解Core Bluetooth会很有帮助. ================================ Cor ...

  3. intent的startActivityForResult()方法

      /******************************************************************************************** * au ...

  4. 初学者学Java(十五)

    再谈数组 在这一篇中我们来讲一下关于数组的排序和查找的方法. 排序 说到数组的排序,就不得不说冒泡这种经典的方法. 1.冒泡排序 冒泡排序的基本思想是比较两个相邻元素的值,如果满足条件就交换元素的值( ...

  5. VS2010 使用TeeChart画图控件 - 之二 - 绘制图形(折线图,柱状图)

    1.前期准备 详细可见VS2010 使用TeeChart画图控件 - 之中的一个 控件和类的导入 1. 1 加入TeeChart控件,给控件加入变量m_TeeChart 加入TeeChart控件,右击 ...

  6. [转] The Single Biggest Obstacle to Trading Success

    Why do some people succeed spectacularly in the market while others fail? The market is the same for ...

  7. Eclipse中Java文件图标由实心J变成空心J的问题

    在eclipse中空心J的java文件,表示不被包含在项目中进行编译,而是当做资源存在项目中.例如 当是单个文件为空心J的时候 1.右击该文件 -- >BuildPath -->Inclu ...

  8. 属性动画 LayoutTransition AnimatorInflater Keyframe 新特性

    LayoutTransition设置动画 使用LayoutTransition可为布局的容器设置动画,当容器中的视图层次发生变化时产生相应的过渡的动画效果 过渡的类型一共有四种: LayoutTran ...

  9. memcache和activemq使用连接,然后close

    memcache和activemq使用连接,然后close

  10. CSS3 3D转换

    CSS3允许你使用3D转换来对元素进行格式化. 3D转换方法: rotateX() rotateY() 浏览器支持 属性 浏览器支持 transform           IE10和Firefox支 ...