Trucking

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2216    Accepted Submission(s): 757

Problem Description
A certain local trucking company would like to transport some goods on a cargo truck from one place to another. It is desirable to transport as much goods as possible each trip. Unfortunately, one cannot always use the roads in the shortest route: some roads may have obstacles (e.g. bridge overpass, tunnels) which limit heights of the goods transported. Therefore, the company would like to transport as much as possible each trip, and then choose the shortest route that can be used to transport that amount.

For the given cargo truck, maximizing the height of the goods transported is equivalent to maximizing the amount of goods transported. For safety reasons, there is a certain height limit for the cargo truck which cannot be exceeded.

 
Input
The input consists of a number of cases. Each case starts with two integers, separated by a space, on a line. These two integers are the number of cities (C) and the number of roads (R). There are at most 1000 cities, numbered from 1. This is followed by R lines each containing the city numbers of the cities connected by that road, the maximum height allowed on that road, and the length of that road. The maximum height for each road is a positive integer, except that a height of -1 indicates that there is no height limit on that road. The length of each road is a positive integer at most 1000. Every road can be travelled in both directions, and there is at most one road connecting each distinct pair of cities. Finally, the last line of each case consists of the start and end city numbers, as well as the height limit (a positive integer) of the cargo truck. The input terminates when C = R = 0.
 
Output
For each case, print the case number followed by the maximum height of the cargo truck allowed and the length of the shortest route. Use the format as shown in the sample output. If it is not possible to reach the end city from the start city, print "cannot reach destination" after the case number. Print a blank line between the output of the cases.
Sample Input
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 10
5 6
1 2 7 5
1 3 4 2
2 4 -1 10
2 5 2 4
3 4 10 1
4 5 8 5
1 5 4
3 1
1 2 -1 100
1 3 10
0 0
0 0
Sample Output

Case 1:
maximum height = 7
length of shortest route = 20

Case 2:
maximum height = 4
length of shortest route = 8

Case 3:
cannot reach destination

题意:给定一个无向图,每条边有长度,通过最大高度两个权值,求解从起点到终点的能通过的最大高度以及在此高度上的最短路径长度

思路:二分搜索,每次进行一次最短路算法Dijkstra,路径更新公式需要添加   map[i][v].h>=p||map[i][v].h==-1

需要注意最后一行不能输出\n  PE了两次

 #include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
#define Max 1005
#define INF 9999999
struct node
{
int len,h;
}map[Max][Max];
bool vis[Max];
int dis[Max];
int c,r;
int s,e,height; bool Dijkstra(int p)
{
int i,j;
memset(vis,,sizeof(vis));
for(i=;i<=c;i++)
dis[i]=INF;
dis[s]=;
while(true)
{
int v=;
for(i=;i<=c;i++)
{
if(!vis[i]&&(v==||dis[i]<dis[v]))
v=i;
}
if(v==)
break;
vis[v]=;
//cout<<v<<endl;
// cout<<"3 "<<dis[3]<<endl;
for(i=;i<=c;i++)
{
if(vis[i]==&&(map[i][v].h>=p||map[i][v].h==-)&&(dis[v]+map[i][v].len<dis[i]))
dis[i]=dis[v]+map[i][v].len;
}
}
return dis[e]!=INF;
} int main()
{
int i,j;
int a,b;
int t=;
freopen("in.txt","r",stdin);
while(scanf("%d%d",&c,&r))
{
if(c==&&r==)
break;
for(i=;i<=c;i++)
for(j=;j<=c;j++)
{
map[i][j].h=;
map[i][j].len=INF;
}
for(i=;i<r;i++)
{
scanf("%d%d",&a,&b);
scanf("%d%d",&map[a][b].h,&map[a][b].len);
map[b][a].h=map[a][b].h;
map[b][a].len=map[a][b].len;
}
scanf("%d%d%d",&s,&e,&height);
int lb=,rb=height+,mid,ans,length=INF;
while(rb-lb>)
{
mid=(rb+lb)/;
if(Dijkstra(mid))
{
length=dis[e];
ans=mid;
lb=mid;
}
else
rb=mid;
}
if(t!=)
printf("\n");
if(length==INF)
printf("Case %d:\ncannot reach destination\n",t++);
else
{
printf("Case %d:\n",t++);
printf("maximum height = %d\n",ans);
printf("length of shortest route = %d\n",length);
}
}
}

Trucking(HDU 2962 最短路+二分搜索)的更多相关文章

  1. Day4 - I - Trucking HDU - 2962

    A certain local trucking company would like to transport some goods on a cargo truck from one place ...

  2. hdu 2962 最短路+二分

    题意:最短路上有一条高度限制,给起点和最大高度,求满足高度最大情况下,最短路的距离 不明白为什么枚举所有高度就不对 #include<cstdio> #include<cstring ...

  3. ACM: HDU 2544 最短路-Dijkstra算法

    HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descrip ...

  4. UESTC 30 &&HDU 2544最短路【Floyd求解裸题】

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. hdu 5521 最短路

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  6. HDU - 2544最短路 (dijkstra算法)

    HDU - 2544最短路 Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以 ...

  7. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  8. hdu 2962 Trucking (最短路径)

    Trucking Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU - 2962 Trucking SPFA+二分

    Trucking A certain local trucking company would like to transport some goods on a cargo truck from o ...

随机推荐

  1. C程序设计语言练习题1-2

    练习1-2 做个实验,当printf函数的参数字符串中包含\c(其中c是上面的转义字符串序列中未曾列出的某一个字符)时,观察一下会出现什么情况. 代码如下: #include <stdio.h& ...

  2. cygwin编译SDL1.2

    1.下载了一个SDL-1.2.14.tar.gz 2.下载一个cygwin64对SDL-1.2.14.tar.gz解压 tar -zxvf SDL-1.2.14.tar.gz 在网上找的大概是需要需要 ...

  3. stack适配栈

    #include <stack> stack<int> s; s.empty() 如果栈为空,则返回 true,否则返回 stack s.size() 返回栈中元素的个数 s. ...

  4. 一些关于poi导入的样例

    获取请求对象 MultipartHttpServletRequest multipartRequest = (MultipartHttpServletRequest) request; 获取上传的文件 ...

  5. Lazy Load Plugin for jQuery延迟加载测试成功

    一直需要的功能,网页图片太多时对于降低网络流量超有用. 最新的V1.9.3版本其实已不用修改就可以起作用了. 不用网上说的要自己修改代码.

  6. 如何解决Bluetooth系统设计的棘手问题

    我们若想设计一套完善的蓝牙 (Bluetooth) 系统,就必须充分掌握其中的技术知识,例如协议堆栈.射频设计及系统集成等方面的专门知识.LMX9820 芯片的面世令蓝牙系统的设计工作变得更为容易.以 ...

  7. logstash 通过type判断

    [elk@zjtest7-frontend type]$ cat input.conf input { file { type => "type_a" path => ...

  8. redis maxmemory设置

    关于maxmemory的设置,如果redis的应用场景是作为db使用,那不要设置这个选项,因为db是不能容忍丢失数据的. 如果作为cache使用,则可以启用这个选项(其实既然有淘汰策略,那就是cach ...

  9. 同行blog收集

    姜楠:http://www.slyar.com/blog/ 赵劼:http://blog.zhaojie.me/ 研究者July:http://my.csdn.net/v_JULY_v 王卓群:htt ...

  10. 【活动】明星衣橱CEO林清华聊创业 | 猎云网

    [活动]明星衣橱CEO林清华聊创业 | 猎云网 [活动]明星衣橱CEO林清华聊创业