Udacity-Artificial Intelligence for Robotics 课程笔记
Lesson 1 Localization
蒙特卡洛机器人定位模型
sense 贝叶斯模型
move 全概率公式
localization练习
# The function localize takes the following arguments: # # colors: # 2D list, each entry either 'R' (for red cell) or 'G' (for green cell) # # measurements: # list of measurements taken by the robot, each entry either 'R' or 'G' # # motions: # list of actions taken by the robot, each entry of the form [dy,dx], # where dx refers to the change in the x-direction (positive meaning # movement to the right) and dy refers to the change in the y-direction # (positive meaning movement downward) # NOTE: the *first* coordinate is change in y; the *second* coordinate is # change in x # # sensor_right: # float between 0 and 1, giving the probability that any given # measurement is correct; the probability that the measurement is # incorrect is 1-sensor_right # # p_move: # float between 0 and 1, giving the probability that any given movement # command takes place; the probability that the movement command fails # (and the robot remains still) is 1-p_move; the robot will NOT overshoot # its destination in this exercise # # The function should RETURN (not just show or print) a 2D list (of the same # dimensions as colors) that gives the probabilities that the robot occupies # each cell in the world. # # Compute the probabilities by assuming the robot initially has a uniform # probability of being in any cell. # # Also assume that at each step, the robot: # 1) first makes a movement, # 2) then takes a measurement. # # Motion: # [0,0] - stay # [0,1] - right # [0,-1] - left # [1,0] - down # [-1,0] - up def sense(p,colors,measurement,sensor_right): q=[] for row in range(len(colors)): temp=[] for col in range(len(colors[0])): hit = (measurement == colors[row][col]) temp.append(p[row][col] * (hit * sensor_right + (1-hit) * (1-sensor_right))) q.append(temp) s=0 for row in range(len(q)): for col in range(len(q[0])): s += q[row][col] for row in range(len(p)): for col in range(len(q[0])): q[row][col] = q[row][col]/s return q def move(p, motion, p_move): q = [] for row in range(len(colors)): temp=[] for col in range(len(colors[0])): s = p_move * p[(row - motion[0]) % len(colors)][(col - motion[1]) % len(colors[0])] s += (1-p_move) * p[row][col] temp.append(s) q.append(temp) return q def localize(colors,measurements,motions,sensor_right,p_move): # initializes p to a uniform distribution over a grid of the same dimensions as colors pinit = 1.0 / float(len(colors)) / float(len(colors[0])) p = [[pinit for row in range(len(colors[0]))] for col in range(len(colors))] # >>> Insert your code here <<< for k in range(len(motions)): p = move(p, motions[k],p_move) p = sense(p,colors,measurements[k],sensor_right) return p def show(p): rows = ['[' + ','.join(map(lambda x: '{0:.5f}'.format(x),r)) + ']' for r in p] print '[' + ',\n '.join(rows) + ']' ############################################################# # For the following test case, your output should be # [[0.01105, 0.02464, 0.06799, 0.04472, 0.02465], # [0.00715, 0.01017, 0.08696, 0.07988, 0.00935], # [0.00739, 0.00894, 0.11272, 0.35350, 0.04065], # [0.00910, 0.00715, 0.01434, 0.04313, 0.03642]] # (within a tolerance of +/- 0.001 for each entry) colors = [['R','G','G','R','R'], ['R','R','G','R','R'], ['R','R','G','G','R'], ['R','R','R','R','R']] measurements = ['G','G','G','G','G'] motions = [[0,0],[0,1],[1,0],[1,0],[0,1]] p = localize(colors,measurements,motions,sensor_right = 0.7, p_move = 0.8) show(p) # displays your answer
simultaneous adj.同时的
Udacity-Artificial Intelligence for Robotics 课程笔记的更多相关文章
- (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers
A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...
- 学习笔记之人工智能(Artificial Intelligence)
人工智能 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD 人工智能(英语:Artif ...
- (转) Artificial intelligence, revealed
Artificial intelligence, revealed Yann LeCunJoaquin Quiñonero Candela It's 8:00 am on a Tuesday morn ...
- Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- EECS 649 Introduction to Artificial Intelligence
EECS 649 Introduction to Artificial IntelligenceExamElectronic Blackboard Submission Due: April 24, ...
- CS231n课程笔记翻译6:神经网络笔记 part1
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 1,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,巩子嘉和堃堃进行校对修改.译文含 ...
- 【读书笔记与思考】Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- Artificial Intelligence in Finance
https://sigmoidal.io/real-applications-of-ai-in-finance/ Artificial Intelligence is taking the finan ...
- Artificial intelligence(AI)
ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...
随机推荐
- java学习:AWT组件和事件处理的笔记(1)--文本框
java.awt包中的TextField类是专门用来建立文本框的,即TextField类创建的一个对象便是一个文本框. 1.TextField类的主要方法 (1)TextField() ...
- static_cast与dynamic_cast转换 最简单的理解
3.1 static_cast用法:static_cast < type-id > ( exdivssion ) 该运算符把exdivssion转换为type-id类型,但没有运行时类型检 ...
- 红外遥控系统原理及单片机软件解码程序,我的编写经历(C版本)
应该说现在每一块开发板都带有红外模块,并且大都配置了相应的程序.但其实自己动手写解码程序,更能锻炼自己所学,且不谈程序写的如何,这个过程中肯定是受益良多的.现在我就把我花一下午写出的解码程序与大家分享 ...
- 把DEDE的在线文本编辑器换成Kindeditor不显示问题
在织梦论坛下载了[Kindeditor编辑器For DedeCMS],按照操作说明安装后,后台文章编辑的区域却显示空白,有人说不兼容V57版本,有人说不兼容gbk版本,我也纠结了很久,在网上找了很多版 ...
- ubuntu下google 拼音输入法的安装
google拼音输入法安装 (1).获代替码:(没有git的先安装git:sudoapt-get install git-core) $>gitclone git://github.com/tc ...
- iOS7 UIKit动力学-碰撞特性UICollisionBehavior 下
上文讲到了为window加一个边界.实现碰撞的效果,接下来我们将提到一个托付方法: - (void)collisionBehavior:(UICollisionBehavior *)behavior ...
- CSSREM插件
CSSREM 一个CSS的px值转rem值的Sublime Text 3自动完成插件. 插件效果如下: 安装 下载本项目,比如:git clone https://github.com/flashli ...
- css属性pointer-events
绝对定位元素盖住链接或添加某事件handle的元素后,那么该链接的默认行为(页面跳转)或元素事件将不会被触发.现在Firefox3.6+/Safari4+/Chrome支持一个称为pointer-ev ...
- Hexo 官方主题 landscape-plus 优化
博主喜欢简洁大方的Hexo主题,看了不下100个主题之后,最终选择了 landscape-plus 主题(针对中国大陆地区,对Hexo官方主题landscape进行优化后的版本).更多Hexo主题资源 ...
- js 多媒体audio video
本文主要简单的介绍一下audio 和 video两个标签的用法 <audio src="music.mp3"></audio> <video src= ...