线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子.

 #include<bits/stdc++.h>

 using namespace std;

 #define M(l, r) (((l) + (r)) >> 1)

 typedef long long ll;

 const int maxn = ;

 int N, V[maxn], lc[maxn], rc[maxn], n = ;

 struct Node *null, *pt;
struct Node {
Node *l, *r;
int cnt;
Node() : cnt() {
l = r = null;
}
inline void update() {
cnt = l->cnt + r->cnt;
}
void* operator new(size_t) {
return pt++;
}
} pool[maxn * ], *root[maxn]; void init() {
pt = pool;
null = new(Node);
null->l = null->r = null;
} int v;
void build(Node* t, int l, int r) {
t->cnt = ;
if(r > l) {
int m = M(l, r);
v <= m ? build(t->l = new(Node), l, m) : build(t->r = new(Node), m + , r);
}
} ll cnt0, cnt1, ans = ; Node* merge(Node* L, Node* R) {
if(L == null) return R;
if(R == null) return L;
cnt0 += ll(L->r->cnt) * R->l->cnt;
cnt1 += ll(L->l->cnt) * R->r->cnt;
L->l = merge(L->l, R->l);
L->r = merge(L->r, R->r);
L->update();
return L;
} void read(int x) {
scanf("%d", V + x);
if(!V[x]) {
read(lc[x] = n++); read(rc[x] = n++);
}
} void work(int x) {
if(!~x) return;
work(lc[x]); work(rc[x]);
if(!V[x]) {
cnt0 = cnt1 = ;
if(!~lc[x])
root[x] = root[rc[x]];
else if(!~rc[x])
root[x] = root[lc[x]];
else
root[x] = merge(root[lc[x]], root[rc[x]]);
ans += min(cnt0, cnt1);
}
} int main() { init();
memset(lc, -, sizeof lc); memset(rc, -, sizeof rc);
scanf("%d", &N);
n = ; read(n++); for(int i = ; i < n; i++) if(V[i]) {
v = V[i];
build(root[i] = new(Node), , N);
}
work();
cout << ans << "\n"; return ;
}

2212: [Poi2011]Tree Rotations

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 548  Solved: 195
[Submit][Status][Discuss]

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar's tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree's description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree's description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

HINT

 

Source

BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )的更多相关文章

  1. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  2. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  3. bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...

  4. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  5. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  6. BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...

  7. bzoj 2212: [Poi2011]Tree Rotations

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  8. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  9. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

随机推荐

  1. out/target/common/obj/PACKAGING/public_api.txt android.view.KeyEvent.KEYCODE_has changed value from

    编译出错: out/target/common/obj/PACKAGING/public_api.txt:22549: error 17: Field android.view.KeyEvent.KE ...

  2. Mybatis 简单的CRUD 基于XML文件配置

    全部的ORM框架学习曲线都是先来一个CRUD爽一爽,以下我们就来CRUD一下,全部的配置都是基于上一篇的配置.废话不多说,直接上代码. <?xml version="1.0" ...

  3. hdu4370 0 or 1【最短路+建图】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4297627.html   ---by 墨染之樱花 题目链接:http://acm.hdu.ed ...

  4. SVN使用技巧

    安装 下载SVN服务端:VisualSVN Server https://www.visualsvn.com/downloads/ 安装,下一步...(更改地址,Location是安装目录,Repos ...

  5. js得到分页栏

    自己写的,感觉返回html代码蠢蠢的,但是新手并不知道怎么写更好的,感觉这样子也蛮简单.记录下来,以后来越改越好. //获得分页栏.注意indexSize为奇数,这样也比较好看 //totalNum: ...

  6. VS2008非托管C++调用wcf(WebService)服务

    在Visual Studio 2008以及以后版本中,微软停止了非托管C++的直接WebService引用.不过ATL Server代码已经托管到开源网站上,我们可以找到ATL Server的源代码, ...

  7. 基于QtQuick2.0应用程序运行于XP系统的诸多问题

    客户端 使用QtQuick技术开发酷炫的XP客户端经常遇到白屏或者无界面 if Qt is built using ANGLE, its shared libraries and the requir ...

  8. iOS SDK:预览和打开文档

    iOS中的沙盒可以让平台更加的安全,这也是沙盒给用户带来的最主要好处.不过由于沙盒的严格限制,导致程序之间共享数据比较麻烦.一般在程序间共享文档可以通过UIDocumentInteractionCon ...

  9. 关于R.styleable的问题

    原来想直接想调用程序的东西,但是使用R.styleable的时候 eclipse不能解析了,后来发现原来被删除了此方法 public ImageAdapter(Context c) { mContex ...

  10. 谈谈Facebook的聊天系统架构

    今天看到一份 Facebook 公司 2009 年的 Slideshow, 介绍它的聊天系统架构, 其中的一张图结构非常清晰, 所以我对这张图谈谈我的看法. Web Tier: 用 PHP 开发, 聊 ...