线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子.

 #include<bits/stdc++.h>

 using namespace std;

 #define M(l, r) (((l) + (r)) >> 1)

 typedef long long ll;

 const int maxn = ;

 int N, V[maxn], lc[maxn], rc[maxn], n = ;

 struct Node *null, *pt;
struct Node {
Node *l, *r;
int cnt;
Node() : cnt() {
l = r = null;
}
inline void update() {
cnt = l->cnt + r->cnt;
}
void* operator new(size_t) {
return pt++;
}
} pool[maxn * ], *root[maxn]; void init() {
pt = pool;
null = new(Node);
null->l = null->r = null;
} int v;
void build(Node* t, int l, int r) {
t->cnt = ;
if(r > l) {
int m = M(l, r);
v <= m ? build(t->l = new(Node), l, m) : build(t->r = new(Node), m + , r);
}
} ll cnt0, cnt1, ans = ; Node* merge(Node* L, Node* R) {
if(L == null) return R;
if(R == null) return L;
cnt0 += ll(L->r->cnt) * R->l->cnt;
cnt1 += ll(L->l->cnt) * R->r->cnt;
L->l = merge(L->l, R->l);
L->r = merge(L->r, R->r);
L->update();
return L;
} void read(int x) {
scanf("%d", V + x);
if(!V[x]) {
read(lc[x] = n++); read(rc[x] = n++);
}
} void work(int x) {
if(!~x) return;
work(lc[x]); work(rc[x]);
if(!V[x]) {
cnt0 = cnt1 = ;
if(!~lc[x])
root[x] = root[rc[x]];
else if(!~rc[x])
root[x] = root[lc[x]];
else
root[x] = merge(root[lc[x]], root[rc[x]]);
ans += min(cnt0, cnt1);
}
} int main() { init();
memset(lc, -, sizeof lc); memset(rc, -, sizeof rc);
scanf("%d", &N);
n = ; read(n++); for(int i = ; i < n; i++) if(V[i]) {
v = V[i];
build(root[i] = new(Node), , N);
}
work();
cout << ans << "\n"; return ;
}

2212: [Poi2011]Tree Rotations

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 548  Solved: 195
[Submit][Status][Discuss]

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar's tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree's description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree's description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

HINT

 

Source

BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )的更多相关文章

  1. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  2. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  3. bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...

  4. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  5. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  6. BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...

  7. bzoj 2212: [Poi2011]Tree Rotations

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  8. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  9. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

随机推荐

  1. LeetCode :Word Ladder II My Solution

    Word Ladder II Total Accepted: 11755 Total Submissions: 102776My Submissions Given two words (start  ...

  2. JSP 9 大内置对象详解

    内置对象特点: 1.            由JSP规范提供,不用编写者实例化. 2.            通过Web容器实现和管理 3.            所有JSP页面均可使用 4.     ...

  3. Html表格&lt;table&gt;还是须要加入一些标签进行优化,能够加入标题&lt;caption&gt;和摘要&lt;table summary&gt;

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  4. XCL-Charts图表库中柱形图的同源风格切换介绍

    柱形图是被使用最多的图之中的一个,在写XCL-Charts这个Android图表库时,为它花费的时间相当多,不是由于有多难绘制,而是要在设计时怎样才干保证图基类能适应各种情况,能灵活满足足够多的需求, ...

  5. C#中Cache用法

    C#中Cache用法     Cache 是分配在服务器上的一个公共的内存片,所谓公共指的cache只要一创建是任何一个客户端浏览器都可以通过后台代码访问到它,它面向的是所有用户,相对而言sessio ...

  6. NSUserDefaults概述

    原创,转载请注明原文:NSUserDefaults概述  By Lucio.Yang 首先,iOS中有四种存储数据的方式-对比iOS中的四种数据存储 NSUserDefaults是其中很常用的一种.N ...

  7. 关于RMAN的配置信息存储和控制文件的关系

    没有使用catalog时,rman中的所有配置信息都会记入在 控制文件中 控制文件中dump出来的信息: *********************************************** ...

  8. JavaScript基础知识----六道有趣的Js基础题以及解答

    题目: 1.找出数字数组中最大的元素(使用Math.max函数)2.转化一个数字数组为function数组(每个function都弹出相应的数字)3.给object数组进行排序(排序条件是每个元素对象 ...

  9. HTML5 总结-表单-输入类型

    HTML5 Input 类型 HTML5 新的 Input 类型 HTML5 拥有多个新的表单输入类型.这些新特性提供了更好的输入控制和验证. 本章全面介绍这些新的输入类型: email url nu ...

  10. STL string 模拟

    下面的代码来自c++ primer plus第5版第12章,书中代码写的非常好: // string1.h -- fixed and augmented string class definition ...