https://www.zhihu.com/question/34681168

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?修改

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面。刚入门的小白真心       

 
个人觉得CNN、RNN和DNN不能放在一起比较。
DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在时间上深度的神经网络。
推荐你从UFLDL开始看,这是斯坦福深度学习的课程,了解一些神经网络的基础,会对你的学习有很大帮助。
=============================分割线======================================
前面一位同学回答得非常详细完整,我再回来谈一谈怎么学习这些模型,我来分享一下我的学习历程。我也是在学习中,以后会慢慢继续补充。
1、http://ufldl.stanford.edu/wiki/index.php/UFLDL教程
这是我最开始接触神经网络时看的资料,把这个仔细研究完会对神经网络的模型以及如何训练(反向传播算法)有一个基本的认识,算是一个基本功。

2、Deep Learning Tutorials
这是一个开源的深度学习工具包,里面有很多深度学习模型的python代码还有一些对模型以及代码细节的解释。我觉得学习深度学习光了解模型是不难的,难点在于把模型落地写成代码,因为里面会有很多细节只有动手写了代码才会了解。但Theano也有缺点,就是极其难以调试,以至于我后来就算自己动手写几百行的代码也不愿意再用它的工具包。所以我觉得Theano的正确用法还是在于看里面解释的文字,不要害怕英文,这是必经之路。PS:推荐使用python语言,目前来看比较主流。(更新:自己写坑实在太多了,CUDA也不知道怎么用,还是乖乖用theano吧...)

3、Stanford University CS231n: Convolutional Neural Networks for Visual Recognition
斯坦福的一门课:卷积神经网络,李飞飞教授主讲。这门课会系统的讲一下卷积神经网络的模型,然后还有一些课后习题,题目很有代表性,也是用python写的,是在一份代码中填写一部分缺失的代码。如果把这个完整学完,相信使用卷积神经网络就不是一个大问题了。

4、斯坦福大学公开课 :机器学习课程
这可能是机器学习领域最经典最知名的公开课了,由大牛Andrew Ng主讲,这个就不仅仅是深度学习了,它是带你领略机器学习领域中最重要的概念,然后建立起一个框架,使你对机器学习这个学科有一个较为完整的认识。这个我觉得所有学习机器学习的人都应该看一下,我甚至在某公司的招聘要求上看到过:认真看过并深入研究过Andrew Ng的机器学习课程,由此可见其重要性。

 
 
 
 
 
 
 
 

 

 
 

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?的更多相关文章

  1. 神经网络 之 DNN(深度神经网络) 介绍

    CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提 ...

  2. CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)

    本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达 ...

  3. 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...

  4. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  5. Recurrent Neural Networks(RNN) 循环神经网络初探

    1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一 ...

  6. 深度神经网络(DNN)是否模拟了人类大脑皮层结构?

    原文地址:https://www.zhihu.com/question/59800121/answer/184888043 神经元 在深度学习领域,神经元是最底层的单元,如果用感知机的模型, wx + ...

  7. numpy 构建深度神经网络来识别图片中是否有猫

    目录 1 构建数据 2 随机初始化数据 3 前向传播 4 计算损失 5 反向传播 6 更新参数 7 构建模型 8 预测 9 开始训练 10 进行预测 11 以图片的形式展示预测后的结果 搭建简单神经网 ...

  8. 3. CNN卷积网络-反向更新

    1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 如果读者详细的了解了DNN神经网络的反向更新,那对我们今天的学习会有很大的帮助.我们的CNN ...

  9. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

随机推荐

  1. hdu2795--Billboard

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=2795 摘要:有一块尺寸为h*w的矩形长板,要在上面贴1*wi的海报n张,选择贴海报的位置是:尽量高,同一 ...

  2. 【剑指offer】面试题39:二叉树的深度

    题目: 输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. 思路: 根的深度=MAX(左子树深度,右子树深度)+1; Code: ...

  3. java java.uitl.Random产生随机数

    通过使用java.uitl.Random产生一个1-10内的随机数.例: Random random = new Random(); int i = Math.abs(random.nextInt() ...

  4. html5 750 REM JS换算方法

    在安卓手机低版本浏览器,如果进页面快速执行的话会出现计算宽度不正确的情况,解决方法是放在onload方法里面执行,但这种解决方式在一些高版本浏览器中会出现页面闪动,所以使用判断浏览器版本的方式来解决, ...

  5. IIS 问题解决

    一.网站发布后 报500错误 解决办法:重新向iis注册framwork: 二.试图加载格式不正确的程序.(Exception from HRESULT: 0x8007000B) 解决办法:对应应用程 ...

  6. [原创作品]手把手教你怎么写jQuery插件

    这次随笔,向大家介绍如何编写jQuery插件.啰嗦一下,很希望各位IT界的‘攻城狮’们能和大家一起分享,一起成长.点击左边我头像下边的“加入qq群”,一起分享,一起交流,当然,可以一起吹水.哈,不废话 ...

  7. Live555 实战之框架简单介绍

    作者:咕唧咕唧liukun321 来自:http://blog.csdn.net/liukun321 上一篇文章简要介绍了怎样以共享库的方式交叉编译Live555,今天再来介绍live源代码框架. 先 ...

  8. android面试题之七

    三十六.请解释下在单线程模型中Message.Handler.Message Queue.Looper之间的关系. 简单的说,Handler获取当前线程中的looper对象,looper用来从存放Me ...

  9. [RxJS] Completing a Stream with TakeWhile

    Subscribe can take three params: subscribe( (x)=> console.log(x), err=> console.log(err), ()=& ...

  10. 查看linux版本和内核信息

    一.查看Linux内核版本命令(两种方法): 1.cat /proc/version [root@localhost ~]# cat /proc/versionLinux version 2.6.32 ...