#include <iostream>
using namespace std; class Father
{
public:
~Father()
{
cout << "Father's Desconstruct Called. " << endl;
}
}; class Son: public Father
{
public:
~Son()
{
cout << "Son's Desconstruct Called " << endl;
} }; int main()
{
Father* f = new Son();
delete f; return ;
}
[root@cp ~]# g++ test.cpp -o test.o
[root@cp ~]# ./test.o
Father's Desconstruct Called.
[root@cp ~]#
//用父类指针指向new出来来的之类对象,这样是没问题的,接着,对这个父类指针变量进行了delete操作。上面的输出结果是什么呢?
//子类的析构函数没有调用

可见,子类的析构函数没有被调用,那如果子类中new了内存,那么那块内存就丢了。如何保证在删除父类指针的时候,子类的析构函数也被调用呢?看如下代码:

 #include <iostream>
using namespace std; class Father
{
public:
virtual ~Father()
{
cout << "Father's Desconstruct Called. " << endl;
}
}; class Son: public Father
{
public:
~Son()
{
cout << "Son's Desconstruct Called " << endl;
} }; int main()
{
Father* f = new Son();
delete f; return ;
  }
[root@cp ~]# g++ test.cpp -o test.o
[root@cp ~]# ./test.o
Son's Desconstruct Called
Father's Desconstruct Called.
[root@cp ~]#
//这就是动态联编的析构函数,至于为什么这样就可以调用子类的析构函数了,这就牵涉到另一个概 念:虚函数表

下面转一篇关于《需函数表的文章》:http://blog.csdn.net/hairetz/article/details/4137000

C++中的虚函数的作用主要是实现了多态的机制。关于多态,简而言之就是用父类型的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。这种技术可以让父类的指针有“多种形态”,这是一种泛型技术。所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。比如:模板技术,RTTI技术,虚函数技术,要么是试图做到在编译时决议,要么试图做到运行时决议。

关于虚函数的使用方法,我在这里不做过多的阐述。大家可以看看相关的C++的书籍。在这篇文章中,我只想从虚函数的实现机制上面为大家 一个清晰的剖析.

当然,相同的文章在网上也出现过一些了,但我总感觉这些文章不是很容易阅读,大段大段的代码,没有图片,没有详细的说明,没有比较,没有举一反三。不利于学习和阅读,所以这是我想写下这篇文章的原因。也希望大家多给我提意见。

言归正传,让我们一起进入虚函数的世界。

虚函数表

多态性可分为两类: 静态多态 和 动态多态;

函数重载和运算符重载实现的多态属于静态多态;

动态多态性是通过虚函数实现的;

对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table。 在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了 这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。

这里我们着重看一下这张虚函数表。在C++的标准规格说明书中说到,编译器必需要保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证正确取到虚函数的偏移量)。 这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。

听我扯了那么多,我可以感觉出来你现在可能比以前更加晕头转向了。 没关系,下面就是实际的例子,相信聪明的你一看就明白了。

假设我们有这样的一个类:

假设我们有这样的一个类:

class Base {

public:

virtual void f() { cout << "Base::f" << endl; }

virtual void g() { cout << "Base::g" << endl; }

virtual void h() { cout << "Base::h" << endl; }

};

按照上面的说法,我们可以通过Base的实例来得到虚函数表。 下面是实际例程:

typedef void(*Fun)(void);

Base b;

Fun pFun = NULL;

cout << "虚函数表地址:" << (int*)(&b) << endl;

cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) << endl;

/*这里的一点争议的个人看法*/

原文认为(int*)(&b)是虚表的地址,而很多网友都说,(包括我也认为):(int *)*(int*)(&b)才是虚表地址

而(int*)*((int*)*(int*)(&b)); 才是虚表第一个虚函数的地址。

其实看后面的调用pFun = (Fun)*((int*)*(int*)(&b)); 就可以看出,*((int*)*(int*)(&b));转成函数指针给pFun,然后正确的调用到了虚函数virtual void f()。

// Invoke the first virtual function

pFun = (Fun)*((int*)*(int*)(&b));

pFun();

实际运行经果如下:(Windows XP+VS2003, Linux 2.6.22 + GCC 4.1.3)

虚函数表地址:0012FED4

虚函数表 — 第一个函数地址:0044F148

Base::f

通过这个示例,我们可以看到,我们可以通过强行把&b转成int *,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int* 强制转成了函数指针)。通过这个示例,我们就可以知道如果要调用Base::g()和Base::h(),其代码如下:

(Fun)*((int*)*(int*)(&b)+0); // Base::f()

(Fun)*((int*)*(int*)(&b)+1); // Base::g()

(Fun)*((int*)*(int*)(&b)+2); // Base::h()

这个时候你应该懂了吧。什么?还是有点晕。也是,这样的代码看着太乱了。没问题,让我画个图解释一下。如下所示:

注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“/0”一样,其标志了虚函数表的结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。

下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无意义的。我之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。

一般继承(无虚函数覆盖)

下面,再让我们来看看继承时的虚函数表是什么样的。假设有如下所示的一个继承关系:

请注意,在这个继承关系中,子类没有重载任何父类的函数。那么,在派生类的实例中,其虚函数表如下所示:

对于实例:Derive d; 的虚函数表如下:

我们可以看到下面几点:

1)虚函数按照其声明顺序放于表中。

2)父类的虚函数在子类的虚函数前面。

我相信聪明的你一定可以参考前面的那个程序,来编写一段程序来验证。

一般继承(有虚函数覆盖)

覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,我们有下面这样的一个继承关系。

为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:

我们从表中可以看到下面几点,

1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。

2)没有被覆盖的函数依旧。

这样,我们就可以看到对于下面这样的程序,

Base *b = new Derive();

b->f();

由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态。

多重继承(无虚函数覆盖)-----------------有几个父类,子类实例中就会就有几个虚函数表

下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类并没有覆盖父类的函数。

对于子类实例中的虚函数表,是下面这个样子:

我们可以看到:

1) 每个父类都有自己的虚表。

2) 子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的)

这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。

多重继承(有虚函数覆盖)

下面我们再来看看,如果发生虚函数覆盖的情况。

下图中,我们在子类中覆盖了父类的f()函数。

下面是对于子类实例中的虚函数表的图:

我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:

Derive d;

Base1 *b1 = &d;

Base2 *b2 = &d;

Base3 *b3 = &d;

b1->f(); //Derive::f()

b2->f(); //Derive::f()

b3->f(); //Derive::f()

b1->g(); //Base1::g()

b2->g(); //Base2::g()

b3->g(); //Base3::g()

安全性

每次写C++的文章,总免不了要批判一下C++。这篇文章也不例外。通过上面的讲述,相信我们对虚函数表有一个比较细致的了解了。水可载舟,亦可覆舟。下面,让我们来看看我们可以用虚函数表来干点什么坏事吧。

一、通过父类型的指针访问子类自己的虚函数

我们知道,子类没有重载父类的虚函数是一件毫无意义的事情。因为多态也是要基于函数重载的。虽然在上面的图中我们可以看到Base1的虚表中有Derive的虚函数,但我们根本不可能使用下面的语句来调用子类的自有虚函数:

Base1 *b1 = new Derive();

b1->f1(); //编译出错

任何妄图使用父类指针想调用子类中的未覆盖父类的成员函数的行为都会被编译器视为非法,所以,这样的程序根本无法编译通过。但在运行时,我们可以通过指针的方式访问虚函数表来达到违反C++语义的行为。(关于这方面的尝试,通过阅读后面附录的代码,相信你可以做到这一点)

二、访问non-public的虚函数

另外,如果父类的虚函数是private或是protected的,但这些非public的虚函数同样会存在于虚函数表中,所以,我们同样可以使用访问虚函数表的方式来访问这些non-public的虚函数,这是很容易做到的。

如:

class Base {

private:

virtual void f() { cout << "Base::f" << endl; }

};

class Derive : public Base{

};

typedef void(*Fun)(void);

void main() {

Derive d;

Fun pFun = (Fun)*((int*)*(int*)(&d)+0);

pFun();

}

结束语

C++这门语言是一门Magic的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++里面的那些东西,需要去了解C++中那些危险的东西。不然,这是一种搬起石头砸自己脚的编程语言。

在基类中的析构函数声明为virtual的更多相关文章

  1. 基类中定义的虚函数在派生类中重新定义时,其函数原型,包括返回类型、函数名、参数个数、参数类型及参数的先后顺序,都必须与基类中的原型完全相同 but------> 可以返回派生类对象的引用或指针

      您查询的关键词是:c++primer习题15.25 以下是该网页在北京时间 2016年07月15日 02:57:08 的快照: 如果打开速度慢,可以尝试快速版:如果想更新或删除快照,可以投诉快照. ...

  2. 条款7:为多态基类析构函数声明为virtual

    基类指针指向子类对象. 子类对象必须位于堆.因此为了避免泄漏内存资源,当指针不使用时,delete掉每一个对象非常重要.但是如果基类的析构函数不声明为virtual.那么指向子类对象的指针delete ...

  3. why pure virtual function has definition 为什么可以在基类中实现纯虚函数

    看了会音频,无意搜到一个frameworks/base/include/utils/Flattenable.h : virtual ~Flattenable() = 0; 所以查了下“纯虚函数定义实现 ...

  4. 读书笔记 effective c++ Item 43 了解如何访问模板化基类中的名字

    1. 问题的引入——派生类不会发现模板基类中的名字 假设我们需要写一个应用,使用它可以为不同的公司发送消息.消息可以以加密或者明文(未加密)的方式被发送.如果在编译阶段我们有足够的信息来确定哪个信息会 ...

  5. 【转载】 C++多继承中重写不同基类中相同原型的虚函数

    本篇随笔为转载,原文地址:C++多继承中重写不同基类中相同原型的虚函数. 在C++多继承体系当中,在派生类中可以重写不同基类中的虚函数.下面就是一个例子: class CBaseA { public: ...

  6. 窗体的基类中没有设定大小,所以才不能居中,若要窗体居中,必须使用setfixedsize()函数或者resize()函数设定窗体的大小,居中才能正常使用

    最近开发中,遇到了窗体不能居中的问题,看了网上的很多文章,窗口居中,无非都是move至窗口的中心目标; 有两种方式, 一种在构造函数中直接计算中心坐标; 另一种是在窗口show后再move至相应坐标. ...

  7. C++ static静态成员变量在类中仅仅是声明

    今天写代码时看到: 图1的3个静态成员变量在类中仅仅是声明,没有定义以及分配内存:必须在类外,图中就是cpp中,定义分配内存,才能使用

  8. cc31a_demo--CppPrimer_静态成员与继承-在派生类中访问基类中的static成员的方法

    //*基类中的static成员,在整个继承层次中只有一个实例 //*在派生类中访问基类中的static成员的方法 //1.基类名::成员名 //2.子类名::成员名 //3.对象.成员名 //4.指针 ...

  9. 基于SqlSugar的开发框架循序渐进介绍(4)-- 在数据访问基类中对GUID主键进行自动赋值处理

    我们在设计数据库表的时候,往往为了方便,主键ID一般采用字符串类型或者GUID类型,这样对于数据库表记录的迁移非常方便,而且有时候可以在处理关联记录的时候,提前对应的ID值.但有时候进行数据记录插入的 ...

随机推荐

  1. Oracle系列:记录Record

    Oracle系列:记录Record   分类: [Oracle] (15) 版权声明:本文为博主原创文章,未经博主允许不得转载. Oracle系列:记录(Record) 一,什么是记录(Record) ...

  2. android LinearLayout android:layout_weight 作用,固定比例

    android 中的 LinearLayout  是线性布局有水平布局horizontal  垂直布局vertical .本文针对 水平布局horizontal 布局的weight属性做一个标记,以免 ...

  3. Microsoft Office 2010 Pro VOL简体中文正式版

    网友们期待的Microsoft Office Professional Plus 2010 VOL简体中文正式版.所谓的“VOL”,即是Volume Licensing for Organizatio ...

  4. NOI2011 Day1

    NOI2011 Day1 兔农 题目描述:\(fib[1]=fib[2]=1, fib[i]=fib[i-2]+fib[i-1] (i\geq 3)\),若\(fib[i] \equiv 1(mod ...

  5. 愤怒的DZY(二分)

    愤怒的DZY[问题描述]“愤怒的小鸟”如今已经是家喻户晓的游戏了,机智的WJC最近发明了一个类似的新游戏:“愤怒的DZY”.游戏是这样的:玩家有K个DZY,和N个位于不同的整数位置:X1,X2,…,X ...

  6. Loading Image

    Android doesn’t handle animated gifs, but here’s one way to display an animated loading image that i ...

  7. Extjs 4 生成饼状图的例子

    前台: //远程抄表设备下落图表数据 var Store1 = new Ext.data.Store({ <span style="white-space:pre"> ...

  8. c++ 回调类成员函数实现

    实现类成员函数的回调,并非静态函数:区分之 #ifndef __CALLBACK_PROXY_H_ #define __CALLBACK_PROXY_H_ template <typename ...

  9. 【Winform开发2048小游戏】

    先来看一下界面: 游戏帮助类 class GameCore { //游戏地图 private int[,] map = new int[4, 4]; //合并时用到的临时数组 private int[ ...

  10. JavaScript之模仿块级作用域

    简介:在JavaScript中没有块级作用域的概念.这意味这在块语句中定义的变量,实际上在包含函数中而非语句中创建的.证明代码如下: function outputNumbers(count){ fo ...