Problem 2103 Bin & Jing in wonderland

Accept: 201    Submit: 1048 Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

Bin has a dream that he and Jing are both in a wonderland full of beautiful gifts. Bin wants to choose some gifts for Jing to get in her good graces.

There are N different gifts in the wonderland, with ID from 1 to N, and all kinds of these gifts have infinite duplicates. Each time, Bin shouts loudly, “I love Jing”, and then the wonderland random drop a gift in front of Bin. The dropping probability for gift i (1≤i≤N) is P(i). Of cause, P(1)+P(2)+…+P(N)=1. Bin finds that the gifts with the higher ID are better. Bin shouts k times and selects r best gifts finally.

That is, firstly Bin gets k gifts, then sorts all these gifts according to their ID, and picks up the largest r gifts at last. Now, if given the final list of the r largest gifts, can you help Bin find out the probability of the list?

 Input

The first line of the input contains an integer T (T≤2,000), indicating number of test cases.

For each test cast, the first line contains 3 integers N, k and r (1≤N≤20, 1≤k≤52, 1≤r≤min(k,25)) as the description above. In the second line, there are N positive float numbers indicates the probability of each gift. There are at most 3 digits after the decimal point. The third line has r integers ranging from 1 to N indicates the finally list of the r best gifts’ ID.

 Output

For each case, output a float number with 6 digits after the decimal points, which indicates the probability of the final list.

 Sample Input

4 2 3 3 0.3 0.7 1 1 1 2 3 3 0.3 0.7 1 1 2 2 3 3 0.3 0.7 1 2 2 2 3 3 0.3 0.7 2 2 2

 Sample Output

0.027000 0.189000 0.441000 0.343000

 Source

“高教社杯”第三届福建省大学生程序设计竞赛

 
题解:有N种苹果,一个人在下面喊k次,每次掉下来一个苹果,每种苹果掉下来的概率已知,现在给出前r大的苹果种类;
问此时的概率;先找出最小的出现的种类mi,求出比mi大的概率,再求出比mi小的概率,枚举mi出现的次数,概率想乘就好了;
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
double p[], dp[];
typedef long long LL;
LL C[][];
int num[];
int a[];
void db(){
C[][] = C[][] = ;
for(int i = ; i < ; i++){
C[i][] = C[i][i] = ;
for(int j = ; j < i; j++){
C[i][j] = C[i - ][j] + C[i - ][j - ];
}
}
}
int main(){
int T, N, k, r;
scanf("%d", &T);
db();
while(T--){
scanf("%d%d%d", &N, &k, &r);
dp[] = ;
for(int i = ; i <= N; i++){
scanf("%lf", p + i);
dp[i] = dp[i - ] + p[i];
}
double ans = ;
memset(num, , sizeof(num));
int mi = 0x3f3f3f3f;
for(int i = ; i <= r; i++){
scanf("%d", a + i);
num[a[i]]++;
mi = min(mi, a[i]);
}
int now = k;
for(int i = mi + ; i <= N; i++){
if(!num[i])continue;
ans *= C[now][num[i]] * pow(p[i], num[i]);
now -= num[i];
}
double ans1 = ;
for(int i = num[mi]; i <= k - r + num[mi]; i++){
ans1 += C[k - r + num[mi]][i] * pow(p[mi], i) * pow(dp[mi - ], k - r + num[mi] - i);
}
printf("%.6lf\n", ans * ans1);
}
return ;
}

Bin & Jing in wonderland(概率,组合数学)的更多相关文章

  1. FZOJ Problem 2103 Bin & Jing in wonderland

                                                                                                        ...

  2. FZU - 2103 Bin & Jing in wonderland

    FZU - 2103 Bin & Jing in wonderland 题目大意:有n个礼物,每次得到第i个礼物的概率是p[i],一个人一共得到了k个礼物,然后按编号排序后挑选出r个编号最大的 ...

  3. 20140323组队赛 2012福建省第三届ACM省赛题目

    A - Solve equation Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  4. django使用笔记

    django的具体使用可以看官方手册http://djangobook.py3k.cn,这里主要记录使用django中遇到的问题. 1.中文编码问题. 因为我们用到的东西基本上都有中文,在settin ...

  5. django开发总结:

    一,关于setting目录中的“DEBUG” DEBUG=False 把DEBUG从True改成False后就会出现(必需指定404和500错语页面,如上图的目录结构)找不到页面的错误.原因是DEBU ...

  6. CTR校准

    普遍预测CTR不准,需要校准.例如.boosted trees and SVM预測结果趋于保守.即预測的概率偏向于中值:而对于NaiveBayes预測的概率,小概率趋于更小.大概率趋于更大.经常使用的 ...

  7. 阿里面试题:为什么Map桶中个数超过8才转为红黑树

    (为什么一个是8一个是6:防止频繁来回转换小消耗性能) 这是笔者面试阿里时,被问及的一个问题,应该不少人看到这个问题都会一面懵逼.因为,大部分的文章都是分析链表是怎么转换成红黑树的,但是并没有说明为什 ...

  8. django项目的配置文件settings.py详解

    我们创建好了一个Python项目(mysite/)之后,需要在项目中添加模块应用(polls/),在模块应用中添加处理功能逻辑,如添加模块中的视图处理函数(polls.views.index()),这 ...

  9. 【5】Django项目配置settings.py详解

    夫唯不争,故天下莫能与之争 --老子<道德经> 本节内容 1.项目配置文件settings.py介绍 2.数据库配置[MySQL] 3.创建模型对象并和数据库同步 4.python官方提供 ...

随机推荐

  1. [Redux] Extracting Presentational Components -- Footer, FilterLink

    Code to be refactored: let nextTodoId = 0; class TodoApp extends Component { render() { const { todo ...

  2. Android Fragment详解(五):Fragment与Activity通讯

    与activity通讯 尽管fragment的实现是独立于activity的,可以被用于多个activity,但是每个activity所包含的是同一个fragment的不同的实例. Fragment可 ...

  3. 正确的安装qwtplot3D开发库

    1.从网上下载qwtplot3D的最新版本:http://qwtplot3d.sourceforge.net/ 2.解压qwtplot3d-0.2.7.zip到C盘根目录下(注意:路径中不能带有中文汉 ...

  4. 注册AxtiveX控件

    Win8.1或者Win7下 首先在“管理员的身份”运行cmd 然后输入:regsvr32 D:\***\*.ocx

  5. iOS应用性能调优的25个建议和技巧【转】

    转载自:http://blog.jobbole.com/37984/ 首页 最新文章 资讯 程序员 设计 IT技术 创业 在国外 营销 趣文 特别分享 更多 > - Navigation -  ...

  6. 注意:"AspNetPager”的控件“AspNetPager1”必须放在具有 runat=server 的窗体标记内

    应加: <form id="form1" runat="server"> </form> 否则一开始什么也不显示,页面控件看不见,加上a ...

  7. oracle中简单查询语句的格式及执行顺序分析

    一条简单的查询sql格式如下: SELECT ... FROM .... [WHERE ...] --过滤单行 [GROUP BY ...   [HAVING ...]]--GROUP BY对前面wh ...

  8. 多种下载文件方式 Response.BinaryWrite(byte[] DocContent);Response.WriteFile(System.IO.FileInfo DownloadFile .FullName);Response.Write(string html2Excel);

    通过html给xls赋值,并下载xls文件 一.this.Response.Write(sw.ToString());System.IO.StringWriter sw = new System.IO ...

  9. hdu 2199

    Problem Description Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its sol ...

  10. 洛谷 P3397 地毯

    P3397 地毯 题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整 ...