Bellman 算法
这道题目事实上就是在求有没有正环。与求负环的差别就是要不断的更新值,可是这个值要变大。而不是变小。
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 20441 | Accepted: 7337 |
Description
Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations.
Input
of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 104.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <limits.h>
#include <ctype.h>
#include <string.h>
#include <string>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <deque>
#include <vector>
#include <set>
#include <map>
using namespace std;
const int INF = 99999999.9;
const int EM = 5555;
const int VM = 110;
int n,m,s;
double mon; struct Edge{
int u,v;
double com;
double exg;
}edge[EM<<1];
int cnt;
double dis[VM];
//double mon; /*void addage(int cu,int vu,double aa,double bb){
edge[cnt].from = cu;
edge[cnt].to = vu;
edge[cnt].com = aa;
edge[cnt].exg = bb;
cnt++;
}*/ int Bellman(){
int i,j,flag;
for(i=1;i<=n;i++){
dis[i] = 0.0;
}
dis[s] = mon;
for(i=1;i<n;i++){
bool flag = false;
for(j=0;j<cnt;j++){
int u = edge[j].u;
int v = edge[j].v;
double rate = edge[j].exg;
double cost = edge[j].com;
if(dis[v]<(dis[u]-cost)*rate)//求最大的路径
{
dis[v]=(dis[u]-cost)*rate;
flag=true;
}
//if(dis[edge[j].to] < (dis[edge[j].from]-edge[j].com)*edge[j].exg){
// dis[edge[j].to] = (dis[edge[j].from]-edge[j].com)*edge[j].exg;
// flag = 1;
//}
}
if(flag==false){
return false;
}
}
for(j=0; j<cnt; j++)
{
if(dis[edge[j].v]<(dis[edge[j].u]-edge[j].com)*edge[j].exg)//与传统的bell不一样,传统的bell是找负环。如今是找正环,正环无限松弛
return true;
}
return false;
} int main(){
//int n,m,s;
//double mon;
double rab,cab,rba,cba;
int marka,markb; while(~scanf("%d%d%d%lf",&n,&m,&s,&mon)){
cnt = 0;
//flag = 1;
while(m--){
scanf("%d%d%lf%lf%lf%lf",&marka,&markb,&rab,&cab,&rba,&cba);
//addage(marka,markb,a2,a1);
//addage(markb,marka,b2,b1);
edge[cnt].u=marka,edge[cnt].v=markb,edge[cnt].com=cab,edge[cnt].exg=rab;
cnt++;
edge[cnt].u=markb,edge[cnt].v=marka,edge[cnt].com=cba,edge[cnt].exg=rba;
cnt++;
}
if(Bellman()){
printf("YES\n");
}
else{
printf("NO\n");
}
} return 0;
}
Bellman 算法的更多相关文章
- 最短路径问题——bellman算法
关于最短路径问题,最近学了四种方法——bellman算法.邻接表法.dijkstra算法和floyd-warshall算法. 这当中最简单的为bellman算法,通过定义一个边的结构体,存储边的起点. ...
- Bellman算法
Bellman算法 当图有负圈的时候可以用这个判断最短路! [时间复杂度]O(\(nm\)) &代码: #include <bits/stdc++.h> using namespa ...
- 数据结构与算法--最短路径之Bellman算法、SPFA算法
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...
- Floyd 和 bellman 算法
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. F ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- 最短路径问题——floyd算法
floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...
- 最短路径问题——dijkstra算法
仅谈谈个人对dijkstra的理解,dijkstra算法是基于邻接表实现的,用于处理单源最短路径问题(顺便再提一下,处理单源最短路径问题的还有bellman算法).开辟一个结构体,其变量为边的终点和边 ...
- nyoj 115------城市平乱( dijkstra // bellman )
城市平乱 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 南将军统领着N个部队,这N个部队分别驻扎在N个不同的城市. 他在用这N个部队维护着M个城市的治安,这M个城市 ...
- poj 3259 Wormholes spfa算法
点击打开链接 Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 25582 Accepted: 9186 ...
随机推荐
- 对Linux 新手非常有用的20 个命令
你打算从Windows换到Linux上来,还是你刚好换到Linux上来?哎哟!!!我说什么呢,是什么原因你就出现在我的世界里了.从我以往的经验来说,当我刚使用Linux,命令,终端啊什么的,吓了我一跳 ...
- 一笔画问题(floyd+oular+dfs)
一笔画问题 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下 ...
- J2EE之ANT
Ant是一种基于Java的build工具.由一些内置任务组成.这些任务用于编译和运行java应用.创建文档.文件和文件夹的操作. 理论上来说.它有些类似于(Unix)C中的make ,但没有make的 ...
- poj1664 放苹果(递归)
转载请注明出处:http://blog.csdn.net/u012860063?viewmode=contents 题目链接:http://poj.org/problem?id=1664 ------ ...
- [python语法巩固][leetcode326][Power of Three]
题目大意: 让你判断一个int是否为3的幂; 最简单的思路 C++ class Solution { public: bool isPowerOfThree(int n) { for(long lon ...
- Makefiles 介绍
http://www-personal.umich.edu/~ppannuto/writings/makefiles.html Makefiles Makefiles (or, the GNU aut ...
- c语言中的经典算法
c语言经典排序以及查找方法 冒泡排序 #include <stdio.h> int main() { int i, j, t, a[11]; /*定义变量及数组为基本整型*/ printf ...
- Android开发_关于点击事件
为了防止用户或者测试MM疯狂的点击某个button: 创建一个工具类 public class Tools { private static long lastClickTime; public st ...
- PHP学习笔记二
<?php //布尔类型 $a=true; //值不区分大小写 $b=false;//整型0,浮点数0.0,空字符串,不包括任何元素的数组,空对象,null都表示false $c=0; if($ ...
- AFNetworking自我总结
AFNetworking 简介 目前国内开发网络应用使用最多的第三方框架 是专为 Mac OS & iOS 设计的一套网络框架 对 NSURLConnection 和 NSURLSession ...