啥? Beta Round #13 (数学专场)

背景

有人写了一个RSA加密给我玩。

描述

我赌5毛前面两题的内容也就开头几句话平时会用到。

还是做点具体的东西吧。

求c^d Mod N

输入格式

三个用空格隔开的整数c,d,N

输出格式

一个整数表示答案

样例输入

1 2 6

样例输出

1

数据范围与约定

  • 对于前30%的数据:,
  • 对于后70%的数据:

根据标题公式a^b≡a^b mod phi(p)+phi(p)(mod p)(b>=phi(p)) 变把极限搞定,

剩下的数据快速幂乱搞很容易过。。。。。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define phiF (1000000006)
#define MAXN (1000000+10)
typedef long long ll;
ll a,b,F;
char s[MAXN];
ll read()
{
ll p=0;int n=strlen(s+1);
For(i,n)
{
p=(p*10+s[i]-48)%phiF;
}
return p+(n>10)*phiF;
}
ll pow2(ll a,ll b)
{
if (b==1) return a;
if (b==0) return 1;
ll p=pow2(a,b>>1);
p=(p*p)%F;
if (b&1) p=(p*a)%F;
return p;
}
int main()
{
// freopen("ch-BR13-what.in","r",stdin);
// freopen(".out","w",stdout);
scanf("%lld%s%lld",&a,s+1,&F);
printf("%lld\n",pow2(a,read())); // while (1);
return 0;
}

CH BR13数学(啥?-a^b≡a^b mod phi(p)+phi(p)(mod p)(b>=phi(p))公式)的更多相关文章

  1. 数学:A^B的约数(因子)之和对MOD取模

    POJ1845 首先把A写成唯一分解定理的形式 分解时让A对所有质数从小到大取模就好了 然后就有:A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn 然后有: A^B = p1 ...

  2. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  3. [自用]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 ...

  4. 拓扑排序+数学+DP【洛谷P1685】 游览

    P1685 游览 题目描述 顺利通过了黄药师的考验,下面就可以尽情游览桃花岛了! 你要从桃花岛的西头开始一直玩到东头,然后在东头的码头离开.可是当你游玩了一次后,发现桃花岛的景色实在是非常的美丽!!! ...

  5. BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数

    BZOJ_4459_[Jsoi2013]丢番图_数学+分解质因数 Description 丢番图是亚历山大时期埃及著名的数学家.他是最早研究整数系数不定方程的数学家之一. 为了纪念他,这些方程一般被称 ...

  6. P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业

    P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...

  7. luoguP4999 烦人的数学作业

    写在前面 这两天信息量有点大,需要好好消化一下,呼呼 \(f[i][j]\) 的转移式还是好理解的,但是对于其实际意义课上有点糊 求 \(ans_{1, x}\) 是感觉手动把数拆开看会好理解一点?? ...

  8. java报表工具FineReport常用函数的用法总结(数学和三角函数)

    ABS ABS(number):返回指定数字的绝对值.绝对值是指没有正负符号的数值. Number:需要求出绝对值的任意实数. 示例: ABS(-1.5)等于1.5. ABS(0)等于0. ABS(2 ...

  9. CH Round #55 - Streaming #6 (NOIP模拟赛day2)解题报告

    T1九九归一 描述 萌蛋在练习模n意义下的乘法时发现,总有一些数,在自乘若干次以后,会变成1.例如n=7,那么5×5 mod 7=4,4×5 mod 7=6,6×5 mod 7=2,2×5 mod 7 ...

随机推荐

  1. [置顶] 程序员必知(二):位图(bitmap)

    位图是什么? 位图就是数组,一般来说是bit型的数组,具有快速定位某个值的功能,这种思想有很广泛的应用,比如下边两题: 1 找出一个不在5TB个整数中存在的数 假设整数是32位的,总共有4GB个数,我 ...

  2. jbpmAPI-1

    1.1. What is jBPM? jBPM是一个灵活的业务流程管理(BPM)套件.它是轻量级的,完全开源Apache许可下(分布式),用Java编写的.它允许您模型.执行和监控业务流程的整个生命周 ...

  3. Aptana Studio 3 官方汉化包汉化

    Babel Language Pack Update Site for Helios This URL is an Eclipse software repository:http://downloa ...

  4. hdu 2841 Visible Trees

    /** 大意: 求[1,m], [1,n] 之间有多少个数互素...做了 1695 ,,这题就so easy 了 **/ #include <iostream> #include < ...

  5. 基于PCA的人脸识别步骤

    代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像.最容易的方式是直接利用欧式距离计算测 ...

  6. zkw费用流模版

    /************************************************************** Problem: 3876 User: wangck1998 Langu ...

  7. MiddleGenIDE工具的使用

    1. MiddleGenIDE工具            1) 先在网上下载MiddleGenIDE工具.能够參考这里 http://blog.csdn.net/wangcunhuazi/articl ...

  8. 畅通工程续(Dijkstra算法)

    对Dijkstra算法不是很熟悉,写一下思路,希望通过写博客加深理解 Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时, ...

  9. Two-phase Termination

    本文参阅[http://ifeve.com/java-two-phase-termination/] Two-phase Termination模式简介 停止线程是一个目标简单而实现却不那么简单的任务 ...

  10. Java -- sleep and wait

    1.二者的来源 sleep(),是Thread下面的静态方法/静态本地方法. wait(),是Object()的final方法. 2.源码分析 a.sleep() public static void ...