原文地址:http://www.cnblogs.com/GXZlegend/p/6825296.html


题目描述

某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月初的库存量为零,第n月月底的库存量也为零,问如何安排这n个月订购计划,才能使成本最低?每月月初订购,订购后产品立即到货,进库并供应市场,于当月被售掉则不必付存贮费。假设仓库容量为S。

输入

第1行:n, m, S (0<=n<=50, 0<=m<=10, 0<=S<=10000)
第2行:U1 , U2 , ... , Ui , ... , Un (0<=Ui<=10000)
第3行:d1 , d2 , ..., di , ... , dn (0<=di<=100)

输出

只有1行,一个整数,代表最低成本

样例输入

3 1 1000
2 4 8
1 2 4

样例输出

34


题解

贪心 费用流

贪心细节太多了,还是费用流码起来快。

建图很简单:S->i,容量为inf,费用为di;i->t,容量为ui,费用为0;i->i+1,容量为S,费用为m。

这里需要注意的是当月购买的不需要存到仓库中。

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
queue<int> q;
int head[60] , to[500] , val[500] , cost[500] , next[500] , cnt = 1 , s , t , dis[60] , from[60] , pre[60];
void add(int x , int y , int v , int c)
{
to[++cnt] = y , val[cnt] = v , cost[cnt] = c , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , cost[cnt] = -c , next[cnt] = head[y] , head[y] = cnt;
}
bool spfa()
{
int x , i;
memset(from , -1 , sizeof(from));
memset(dis , 0x3f , sizeof(dis));
dis[s] = 0 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
if(val[i] && dis[to[i]] > dis[x] + cost[i])
dis[to[i]] = dis[x] + cost[i] , from[to[i]] = x , pre[to[i]] = i , q.push(to[i]);
}
return ~from[t];
}
int mincost()
{
int ans = 0 , i , k;
while(spfa())
{
k = 0x3f3f3f3f;
for(i = t ; i != s ; i = from[i]) k = min(k , val[pre[i]]);
ans += k * dis[t];
for(i = t ; i != s ; i = from[i]) val[pre[i]] -= k , val[pre[i] ^ 1] += k;
}
return ans;
}
int main()
{
int n , m , k , i , x;
scanf("%d%d%d" , &n , &m , &k) , s = 0 , t = n + 1;
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , add(i , t , x , 0);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , add(s , i , 0x3f3f3f3f , x);
for(i = 1 ; i < n ; i ++ ) add(i , i + 1 , k , m);
printf("%d\n" , mincost());
return 0;
}

【bzoj2424】[HAOI2010]订货 费用流的更多相关文章

  1. BZOJ2424 [HAOI2010]订货 - 费用流

    题解 (非常裸的费用流 题意有一点表明不清: 该月卖出的商品可以不用算进仓库里面. 然后套上费用流模板 代码 #include<cstring> #include<queue> ...

  2. BZOJ 2424: [HAOI2010]订货 费用流

    2424: [HAOI2010]订货 Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月 ...

  3. bzoj2424 [HAOI2010]订货 dp+单调性

    [HAOI2010]订货 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1311  Solved: 884[Submit][Status][Discu ...

  4. BZOJ-2424: [HAOI2010]订货【费用流】

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1487  Solved: 1002[Submit][Status][Discuss] Descript ...

  5. [HAOI2010][bzoj2424] 订货 [费用流]

    题面 传送门 思路 这题其实挺水的......做过餐巾计划问题就能明白,是同一个道理 首先,显然刚刚好满足每一个月的需求,会得到最优解(废话-_-||) 然后我们发现,货物在不同的月之间的转移,可以比 ...

  6. bzoj2424 [HAOI2010]订货

    模拟一下仓库里面存储物品的价格情况即可,如果当前物品大于仓库里面物品那么就替换一下仓库里的物品,然后订货直接从仓库里先取,仓库里不够则直接购买,每次做完后记得买当前物品填补一下仓库直至仓库填满,当然这 ...

  7. 【BZOJ2424】[HAOI2010]订货(费用流)

    [BZOJ2424][HAOI2010]订货(费用流) 题面 BZOJ 洛谷 题解 傻逼费用流吧... 一开始理解错意思了,仓库大小为\(m\)的含义是留到下个月最多为\(m\),而不是任意时刻的容量 ...

  8. BZOJ 2424: [HAOI2010]订货(最小费用最大流)

    最小费用最大流..乱搞即可 ------------------------------------------------------------------------------ #includ ...

  9. BZOJ_2424_[HAOI2010]订货_最小费用最大流

    BZOJ_2424_[HAOI2010]订货_最小费用最大流 Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付 ...

随机推荐

  1. Oracle 使用Nid 修改数据库的DBID 和 Database Name

    How to Change the DBID, DBNAME Using NID Utility (Doc ID 863800.1) Changing the DBID and Database Na ...

  2. Go标准库学习之OS常用函数

    1.OS基础操作 //获取主机名 os.Hostname() //获取当前目录 os.Getwd() //获取用户ID os.Getuid() //获取有效用户ID os.Geteuid() //获取 ...

  3. vue 用户输入搜索 与无限下拉

    vue项目中,用户输入关键字搜索,并且手机端做无限下拉 watch: { 'getListForm.searchKey'(val) { this.radioChange(); // 还有其他逻辑,内部 ...

  4. Session和cookic

    session是无状态的方式,服务器存储机制,当用户第一次请求服务器,服务器会给客户分配一个标识id,客户端再次访问服务器,根据session id 去访问服务器数据库,返回信息,同时session ...

  5. 关于event loop

    之前写了篇文章 JS运行机制,里面对event loop简单的说明,面试时又遇到了关于该知识点的题目(主要是process.nextTick和setImmediate的执行顺序不太知道,查了之后才知道 ...

  6. hdu_4944_FSF’s game

    FSF has programmed a game. In this game, players need to divide a rectangle into several same square ...

  7. Servlet学习笔记02——什么是http协议?

    1.http协议 (了解) (1)什么是http协议? 是一种网络应用层协议,规定了浏览器与web服务器之间 如何通信以及相应的数据包的结构. 注: a.tcp/ip: 网络层协议,可以保证数据可靠的 ...

  8. datatable 单元格默认文本

    在列字段中添加属性:"defaultContent": "-"

  9. while循环,格式化输出,运算符

      1.while循环 1.while 基本机构: while 条件: 循环体 执行流程: 当条件成立时为真,执行循环体. 再次判断条件是否成立,如果成立再次执行. 当判断条件结果为假时,跳出循环,本 ...

  10. keil5的安装及问题

    win8+keil 注意,在进行破解的时候首先要打开一个工程,而且keil要用管理员的身份进行运行, 才可以破解完成 发现打开之后,出现这样的错误. 原因是因为在创建工程的时候在下图中点了是,要点否才 ...