Biorhythms
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 139500   Accepted: 44772

Description

Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier. 
Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak. 

Input

You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1.

Output

For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form:

Case 1: the next triple peak occurs in 1234 days.

Use the plural form ``days'' even if the answer is 1.

Sample Input

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

Sample Output

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days. 题解:中国剩余定理 参考
设m1,m2,m3,m4两两互素,则同余方程组
x≡a1(m1)
x≡a2(m2)
x≡a3(m3)
x≡a4(m4)
....
x≡ak(mk)
一定有解,x≡(a1*M1*M1^(-1)+a2*M2*M2^(-1)+....)
其中M=m1*m2*...*mk,Mi=M/mi,Mi^(-1)是Mi在模mi意义下的逆元。
普通的中国剩余定理要求所有mi互素,那么如果不互素呢?
我们采用两两合并的思想,假设要合并如下两个方程
x=a1+m1*x1
x=a2+m2*x2
那么得到
a1+m1x1=a2+m2x2 => m1x1+m2x2=a2-a1
再利用扩展欧几里得算法解出x1的最小正整数解,再带入
x=a1+m1x1,得到x后合并为一个方程的结果过为
y≡x(mod lcm(m1,m2))
这样一直合并下去,最终可以求得同余方程的解。


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; int a[],m[];
int p,e,i,d,t=; void exgcd(int a,int b,int &x,int &y){
if(b==){
x=;
y=;
return;
}
exgcd(b,a%b,x,y);
int tmp=x;
x=y;
y=tmp-(a/b)*y;
} int CRT(int a[],int m[],int n){
int M=,ans=;
for(int i=;i<=n;i++)M*=m[i];
for(int i=;i<=n;i++){
int x,y;
int Mi=M/m[i];
exgcd(Mi,m[i],x,y);
ans=(ans+Mi*x*a[i])%M;
}
if(ans<)ans+=M;
return ans;
} int main(){
while(cin>>p>>e>>i>>d){
if(p==-&&e==-&&i==-&&d==-)break;
a[]=p;a[]=e;a[]=i;
m[]=;m[]=;m[]=;
int ans=CRT(a,m,);
if(ans<=d)ans+=;
printf("Case %d: the next triple peak occurs in %d days.\n",t++,ans-d);
}
return ;
}

不互素的

 
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 5
#define ll long long
using namespace std;
ll n,m[N],a[N],m1,e;
ll read()
{
ll x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=,y=;
return a;
}
ll r=exgcd(b,a%b,x,y),tmp;
tmp=x,x=y,y=tmp-a/b*y;
return r;
}
ll crt()
{
ll a1=a[],a2,m2,d,c;m1=m[];
for(ll i=;i<=n;++i)
{
a2=a[i],m2=m[i];
c=a2-a1;ll x=,y=;
d=exgcd(m1,m2,x,y);
if(c%d) return -;
x=x*c/d;
int mod=m2/d;
x=(mod+x%mod)%mod;
a1+=m1*x;m1*=mod;
}
return a1;
}
int main()
{
// freopen("mod.in","r",stdin);
// freopen("mod.out","w",stdout);
n=;
for(int i=;i<=n;i++)
m[i]=read(),a[i]=read();
printf("%lld\n",crt());
return ;
}

												

【学习笔记-中国剩余定理】POJ1006 Biorhythms的更多相关文章

  1. 学习笔记 - 中国剩余定理&扩展中国剩余定理

    中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...

  2. Hbase 学习笔记4----原理

    MapReduce 中如何处理HBase中的数据?如何读取HBase数据给Map?如何将结果存储到HBase中? Mapper类:包括一个内部类(Context)和四个方法(setup,map,cle ...

  3. 五毛的cocos2d-x学习笔记06-处理用户交互

    前几篇感觉自己在写教育文章,╮(╯▽╰)╭.今天换成开发者的口吻,毕竟我也是在边学边写博客. 处理用户交互包括:单点触摸.多点触摸.事件传递.传感器.物理按键等部分. 单点触摸: 触摸事件传递顺序 o ...

  4. Three.js学习笔记04--纹理

    1 纹理由图片组成  3D世界的纹理由图片组成. 将纹理以一定的规则映射到几何体上,一般是三角形上,那么这个几何体就有纹理皮肤了. 首先应该有一个纹理类,其次是有一个加载图片的方法,将这张图片和这个纹 ...

  5. Git学习笔记04-管理修改

    Git跟踪并管理的是修改,而非文件.新增文件,修改一行,删除一点,都算是修改. 在.git工作区新增一个文件,test.txt,输入test git ...然后git add ​ ​ add之后修改t ...

  6. Git学习笔记03-原理

    在Git中,算上远程Git仓库有四个工作区域 Git本地有三个区域(工作区域.暂存区,资源区,远程Git仓库) 工作区域:就是你本机写好的代码,你可以看到的 暂存区:你写好的代码上传后被git管理的内 ...

  7. Biorhythms(poj1006+中国剩余定理)

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 117973   Accepted: 37026 Des ...

  8. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

  9. POJ1006 - Biorhythms(中国剩余定理)

    题目大意 略...有中文... 题解 就是解同余方程组 x≡(p-d)(mod 23) x≡(e-d)(mod 28) x≡(i-d)(mod 33) 最简单的中国剩余定理应用.... 代码: #in ...

随机推荐

  1. MySQL 下 ROW_NUMBER / DENSE_RANK / RANK 的实现

    原文链接:http://hi.baidu.com/wangzhiqing999/item/7ca215d8ec9823ee785daa2b MySQL 下 ROW_NUMBER / DENSE_RAN ...

  2. java拾遗3----XML解析(三) StAX PULL解析

    使用PULL方式解析XML: Pull是STAX的一个实现 StAX是The Streaming API for XML的缩写,一种利用拉模式解析(pull-parsing)XML文档的API StA ...

  3. android菜鸟学习笔记18----Android数据存储(二)SharedPreferences

    数据存储的方式,有比直接文件读写更加简便的方式,那就是操作SharedPreferences. SharedPreferences一般用于存储用户的偏好设定,暂时不支持多进程操作. SharedPre ...

  4. OSI模型第三层网络层-初识路由协议

    1.路由协议: 顾名思义就是路由器所使用的协议. 分类: (1)按照作用范围分类,IGP(类型)内部网关协议(rip,ospf,isis),EGP(类型)边界路由协议(bgp) 把互联网比作整个世界土 ...

  5. 九度OJ 1207:质因数的个数 (质数)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5939 解决:1926 题目描述: 求正整数N(N>1)的质因数的个数. 相同的质因数需要重复计算.如120=2*2*2*3*5,共有 ...

  6. 修改maven的war包生成路径

    因为要配合jenkins,所以控制了war包的生成目录: <plugins> <!--打war包到指定的目录下 --> <plugin> <groupId&g ...

  7. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

  8. Java多线程系列 JUC锁08 LockSupport

    转载 http://www.cnblogs.com/skywang12345/p/3505784.html https://www.cnblogs.com/leesf456/p/5347293.htm ...

  9. PHP新写的大转盘抽奖源码

    中奖概率 抽奖大转盘演示:http://www.sucaihuo.com/php/3301.html function getRand($proArr, $proCount) { $result = ...

  10. Linux电源管理(5)_Hibernate和Sleep功能介绍【转】

    本文转载自:http://www.wowotech.net/pm_subsystem/std_str_func.html 1. 前言 Hibernate和Sleep两个功能是Linux Generic ...