Biorhythms
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 139500   Accepted: 44772

Description

Some people believe that there are three cycles in a person's life that start the day he or she is born. These three cycles are the physical, emotional, and intellectual cycles, and they have periods of lengths 23, 28, and 33 days, respectively. There is one peak in each period of a cycle. At the peak of a cycle, a person performs at his or her best in the corresponding field (physical, emotional or mental). For example, if it is the mental curve, thought processes will be sharper and concentration will be easier. 
Since the three cycles have different periods, the peaks of the three cycles generally occur at different times. We would like to determine when a triple peak occurs (the peaks of all three cycles occur in the same day) for any person. For each cycle, you will be given the number of days from the beginning of the current year at which one of its peaks (not necessarily the first) occurs. You will also be given a date expressed as the number of days from the beginning of the current year. You task is to determine the number of days from the given date to the next triple peak. The given date is not counted. For example, if the given date is 10 and the next triple peak occurs on day 12, the answer is 2, not 3. If a triple peak occurs on the given date, you should give the number of days to the next occurrence of a triple peak. 

Input

You will be given a number of cases. The input for each case consists of one line of four integers p, e, i, and d. The values p, e, and i are the number of days from the beginning of the current year at which the physical, emotional, and intellectual cycles peak, respectively. The value d is the given date and may be smaller than any of p, e, or i. All values are non-negative and at most 365, and you may assume that a triple peak will occur within 21252 days of the given date. The end of input is indicated by a line in which p = e = i = d = -1.

Output

For each test case, print the case number followed by a message indicating the number of days to the next triple peak, in the form:

Case 1: the next triple peak occurs in 1234 days.

Use the plural form ``days'' even if the answer is 1.

Sample Input

0 0 0 0
0 0 0 100
5 20 34 325
4 5 6 7
283 102 23 320
203 301 203 40
-1 -1 -1 -1

Sample Output

Case 1: the next triple peak occurs in 21252 days.
Case 2: the next triple peak occurs in 21152 days.
Case 3: the next triple peak occurs in 19575 days.
Case 4: the next triple peak occurs in 16994 days.
Case 5: the next triple peak occurs in 8910 days.
Case 6: the next triple peak occurs in 10789 days. 题解:中国剩余定理 参考
设m1,m2,m3,m4两两互素,则同余方程组
x≡a1(m1)
x≡a2(m2)
x≡a3(m3)
x≡a4(m4)
....
x≡ak(mk)
一定有解,x≡(a1*M1*M1^(-1)+a2*M2*M2^(-1)+....)
其中M=m1*m2*...*mk,Mi=M/mi,Mi^(-1)是Mi在模mi意义下的逆元。
普通的中国剩余定理要求所有mi互素,那么如果不互素呢?
我们采用两两合并的思想,假设要合并如下两个方程
x=a1+m1*x1
x=a2+m2*x2
那么得到
a1+m1x1=a2+m2x2 => m1x1+m2x2=a2-a1
再利用扩展欧几里得算法解出x1的最小正整数解,再带入
x=a1+m1x1,得到x后合并为一个方程的结果过为
y≡x(mod lcm(m1,m2))
这样一直合并下去,最终可以求得同余方程的解。


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std; int a[],m[];
int p,e,i,d,t=; void exgcd(int a,int b,int &x,int &y){
if(b==){
x=;
y=;
return;
}
exgcd(b,a%b,x,y);
int tmp=x;
x=y;
y=tmp-(a/b)*y;
} int CRT(int a[],int m[],int n){
int M=,ans=;
for(int i=;i<=n;i++)M*=m[i];
for(int i=;i<=n;i++){
int x,y;
int Mi=M/m[i];
exgcd(Mi,m[i],x,y);
ans=(ans+Mi*x*a[i])%M;
}
if(ans<)ans+=M;
return ans;
} int main(){
while(cin>>p>>e>>i>>d){
if(p==-&&e==-&&i==-&&d==-)break;
a[]=p;a[]=e;a[]=i;
m[]=;m[]=;m[]=;
int ans=CRT(a,m,);
if(ans<=d)ans+=;
printf("Case %d: the next triple peak occurs in %d days.\n",t++,ans-d);
}
return ;
}

不互素的

 
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 5
#define ll long long
using namespace std;
ll n,m[N],a[N],m1,e;
ll read()
{
ll x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=,y=;
return a;
}
ll r=exgcd(b,a%b,x,y),tmp;
tmp=x,x=y,y=tmp-a/b*y;
return r;
}
ll crt()
{
ll a1=a[],a2,m2,d,c;m1=m[];
for(ll i=;i<=n;++i)
{
a2=a[i],m2=m[i];
c=a2-a1;ll x=,y=;
d=exgcd(m1,m2,x,y);
if(c%d) return -;
x=x*c/d;
int mod=m2/d;
x=(mod+x%mod)%mod;
a1+=m1*x;m1*=mod;
}
return a1;
}
int main()
{
// freopen("mod.in","r",stdin);
// freopen("mod.out","w",stdout);
n=;
for(int i=;i<=n;i++)
m[i]=read(),a[i]=read();
printf("%lld\n",crt());
return ;
}

												

【学习笔记-中国剩余定理】POJ1006 Biorhythms的更多相关文章

  1. 学习笔记 - 中国剩余定理&扩展中国剩余定理

    中国剩余定理&扩展中国剩余定理 NOIP考完回机房填坑 ◌ 中国剩余定理 处理一类相较扩展中国剩余定理更特殊的问题: 在这里要求 对于任意i,j(i≠j),gcd(mi,mj)=1 (就是互素 ...

  2. Hbase 学习笔记4----原理

    MapReduce 中如何处理HBase中的数据?如何读取HBase数据给Map?如何将结果存储到HBase中? Mapper类:包括一个内部类(Context)和四个方法(setup,map,cle ...

  3. 五毛的cocos2d-x学习笔记06-处理用户交互

    前几篇感觉自己在写教育文章,╮(╯▽╰)╭.今天换成开发者的口吻,毕竟我也是在边学边写博客. 处理用户交互包括:单点触摸.多点触摸.事件传递.传感器.物理按键等部分. 单点触摸: 触摸事件传递顺序 o ...

  4. Three.js学习笔记04--纹理

    1 纹理由图片组成  3D世界的纹理由图片组成. 将纹理以一定的规则映射到几何体上,一般是三角形上,那么这个几何体就有纹理皮肤了. 首先应该有一个纹理类,其次是有一个加载图片的方法,将这张图片和这个纹 ...

  5. Git学习笔记04-管理修改

    Git跟踪并管理的是修改,而非文件.新增文件,修改一行,删除一点,都算是修改. 在.git工作区新增一个文件,test.txt,输入test git ...然后git add ​ ​ add之后修改t ...

  6. Git学习笔记03-原理

    在Git中,算上远程Git仓库有四个工作区域 Git本地有三个区域(工作区域.暂存区,资源区,远程Git仓库) 工作区域:就是你本机写好的代码,你可以看到的 暂存区:你写好的代码上传后被git管理的内 ...

  7. Biorhythms(poj1006+中国剩余定理)

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 117973   Accepted: 37026 Des ...

  8. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

  9. POJ1006 - Biorhythms(中国剩余定理)

    题目大意 略...有中文... 题解 就是解同余方程组 x≡(p-d)(mod 23) x≡(e-d)(mod 28) x≡(i-d)(mod 33) 最简单的中国剩余定理应用.... 代码: #in ...

随机推荐

  1. 【BZOJ4894】天赋 有向图生成树计数

    [BZOJ4894]天赋 Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有一些天赋必须是要有前置天赋才能够学习得到的.也就是 ...

  2. 几种动态调用js函数方案的性能比较

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. 如何基于EasyDSS体系的全套SDK完成各种场景下的视频应用需求

    需求背景 回顾EasyDSS的发展过程,基本上保持的是先局部后系统.先组件后平台的发展方式,一步一步夯实每一个细节功能点,从最基础.最兼容的音视频数据的拉流获取,到高效的.全兼容的数据推流,再到流媒体 ...

  4. Storm编程模型及Worker通信机制

    1.编程模型 2.Worker通信机制

  5. They're much closer in spirit to how our brains work than feedforward networks.

    http://neuralnetworksanddeeplearning.com/chap1.html Up to now, we've been discussing neural networks ...

  6. Java基础 - 变量的定义和使用

    变量定义 public class Main { public static void main(String[] args) { // 定义byte类型的变量 byte b = 10; System ...

  7. 什么是GIL锁以及作用

    全局解释锁,每次只能一个线程获得cpu的使用权:为了线程安全,也就是为了解决多线程之间的数据完整性和状态同步而加的锁,因为我们知道线程之间的数据是共享的.

  8. 如何使用Django实现用户登录验证

    最初开始搞用户登录验证的时候感觉没什么难的,不就是增删改查中的查询数据库么,但是还是遇到许多小问题,而且感觉在查询数据库的时候,要把前端的数据一条一条的进行比对,会导致我的代码很丑,而且方式很不智,所 ...

  9. Swift编程语言学习6—— 闭包

    闭包是自包括的函数代码块,能够在代码中被传递和使用. Swift 中的闭包与 C 和 Objective-C 中的代码块(blocks)以及其它一些编程语言中的 lambdas 函数比較类似.   闭 ...

  10. 数据库抽象层PDO

    通过数据库抽象层PDO可以访问多个数据库 //数据库抽象层PDO //造DSN:驱动名:dbname=数据库名:host=服务器地址 $dsn = "mysql:dbname=mydb;ho ...