洛谷 2822 组合数问题——质因数有关的dp
题目:https://www.luogu.org/problemnew/show/P2822
发现 k 都是一样的。所以可以设dp[ i ][ j ]表示 n<=i,m<=j 的答案。发现它就像一个二维平面,所以可以dp[ i ][ j ]=dp[ i-1 ][ j ]+dp[ i ][ j-1 ]-dp[ i-1 ][ j-1 ]+[ c[ i ][ j ]%k==0 ];
先写了记录每个数的阶乘含多少个k,然后看减掉之后还有没有k。但这样没考虑k的因数组成k的情况。所以应该把k质因数分解,看减掉的该因数个数与k里的该因数个数的大小关系。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=1e4+;
int t,k,n[M],m[M],mxn,mxm,mx,a[N][],dp[N][N],cnt,zs[],nm[];
int rdn()
{
int ret=;char ch=getchar();
while(ch>''||ch<'') ch=getchar();
while(ch>=''&&ch<='') ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return ret;
}
int main()
{
t=rdn();k=rdn();
for(int i=;i<=t;i++)
n[i]=rdn(),m[i]=rdn(),mxn=max(mxn,n[i]),mxm=max(mxm,m[i]);
mx=max(mxn,mxm);
int tmp=k;
for(int i=;i<=tmp;i++)
if(tmp%i==)
{
zs[++cnt]=i;
while(tmp%i==)tmp/=i,nm[cnt]++;
}
for(int i=;i<=mx;i++)
for(int j=,s=i;j<=cnt;j++,s=i)
while(s) s/=zs[j],a[i][j]+=s;//数i含有多少第j个质因数
// for(int i=1;i<=mx;i++) printf("a[%d]=%d\n",i,a[i]);
for(int i=;i<=mxn;i++)
{
for(int j=;j<=mxm&&j<i;j++)
{
dp[i][j]=dp[i][j-]+dp[i-][j]-dp[i-][j-];
bool flag=;
for(int o=,d;o<=cnt;o++)
{
d=a[i][o]-a[j][o]-a[i-j][o];
if(d<nm[o]){flag=;break;}
}
dp[i][j]+=(!flag);
// printf("dp[%d][%d]=%d(ai-aj-a(i-j)=%d)\n",i,j,dp[i][j],
// a[i]-a[j]-a[i-j]);
}
for(int j=i;j<=mxm;j++) dp[i][j]=dp[i][j-];
// printf("dp[%d][%d]=%d\n",i,j,dp[i][j]);
}
for(int i=;i<=t;i++)
printf("%d\n",dp[n[i]][m[i]]);
return ;
}
洛谷 2822 组合数问题——质因数有关的dp的更多相关文章
- NOIP 2016 提高组 复赛 Day2T1==洛谷2822 组合数问题
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)
洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...
- 洛谷CF809C Find a car(数位DP)
洛谷题目传送门 通过瞪眼法发现,\(a_{i,j}=(i-1)\text{ xor }(j-1)+1\). 二维差分一下,我们只要能求\(\sum\limits_{i=0}^x\sum\limits_ ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
- 【题解】洛谷P3959 [NOIP2017TG] 宝藏(状压DP+DFS)
洛谷P3959:https://www.luogu.org/problemnew/show/P3959 前言 NOIP2017时还很弱(现在也很弱 看出来是DP 但是并不会状压DP 现在看来思路并不复 ...
- 【洛谷 P4934】 礼物 (位运算+DP)
题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
- 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)
题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...
随机推荐
- Eight(经典题,八数码)
Eight Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
- Wooden Sticks(hdu1051)
Wooden Sticks Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submi ...
- 【译】Stackoverflow:Java Servlet 工作原理问答
导读 本文来自stackoverflow的问答,讨论了Java Servlet的工作机制,如何进行实例化.共享变量和多线程处理. 问题:Servlet 是如何工作的?Servlet 如何实例化.共享变 ...
- Linux使用yum安装rpm包
1.yum其实管理的也是rpm包,只不过依赖什么的都自己做了2.yum在有的linux版本是收费的,但是CentOS是免费的3.yum一般意义上是需要联网的,即:使用网络yum源 a.yum源配置文件 ...
- linux c编程:Posix消息队列
Posix消息队列可以认为是一个消息链表. 有足够写权限的线程可以往队列中放置消息, 有足够读权限的线程可以从队列中取走消息 在某个进程往一个队列写入消息前, 并不需要另外某个进程在该队列上等待消息的 ...
- P4045 [JSOI2009]密码
题目 P4045 [JSOI2009]密码 做法 AC自动机+状压+爆搜 建AC自动机是显然的,顺便预处理\(lst_i\)表示\(i\)结点以哪些串结束(二进制) 然后跑状压\(dp[i][j][k ...
- 顺序表的静态存储(C语言实现)
顺序表是在计算机内存中以数组的形式保存的线性表,是指用一组地址连续的存储单元依次存储数据元素的线性结构. 1.顺序表的结构体声明 #define MAX_SIZE 5 //定义数组的大小 typed ...
- msm8909+android5.1分区及烧录的镜像文件介绍【转】
本文转载自: EMMC的分区及其保存的文件 Partition label filename 说明 PrimaryGPT gpt_main0.bin modem NON-HLOS.bin sbl1 s ...
- codevs 1299 切水果 线段树
1299 切水果 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 简单的说,一共N个水果排成一排,切M次,每次切[L,R]区间的所有水果(可能有的水果 ...
- Tkenter之API测试系统界面设计
# -*- coding: UTF-8 -*- from Tkinter import * tk=Tk() tk.geometry('500x400+500+200') tk.title('API测试 ...