4455: [Zjoi2016]小星星

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 643  Solved: 391
[Submit][Status][Discuss]

Description

小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品。她有n颗小星星,用m条彩色的细线串了起来,每条细
线连着两颗小星星。有一天她发现,她的饰品被破坏了,很多细线都被拆掉了。这个饰品只剩下了n?1条细线,但
通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树。小Y找到了这个饰品的设
计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星。如果现在饰品中两颗小星星有细线相连,
那么要求对应的小星星原来的图纸上也有细线相连。小Y想知道有多少种可能的对应方式。只有你告诉了她正确的
答案,她才会把小饰品做为礼物送给你呢。

Input

第一行包含个2正整数n,m,表示原来的饰品中小星星的个数和细线的条数。
接下来m行,每行包含2个正整数u,v,表示原来的饰品中小星星u和v通过细线连了起来。
这里的小星星从1开始标号。保证u≠v,且每对小星星之间最多只有一条细线相连。
接下来n-1行,每行包含个2正整数u,v,表示现在的饰品中小星星u和v通过细线连了起来。
保证这些小星星通过细线可以串在一起。
n<=17,m<=n*(n-1)/2

Output

输出共1行,包含一个整数表示可能的对应方式的数量。
如果不存在可行的对应方式则输出0。

Sample Input

4 3
1 2
1 3
1 4
4 1
4 2
4 3

Sample Output

6

HINT

Source

这道题目的画风十分新奇,题意我一开始都没怎么看懂,

题意:就是给你n个点的图和一棵树,然后将树重新标号,使得其在图中存在。

20分直接枚举全排列就可以了

40分的话dp+优化,考试的时候可以想想,类似那道暴力状态压缩转移那道题

原来的dp的话 f[i][j][sta]表是i这颗子树,i为j颜色,用sta填充,&&(j-1)那样去做,渐进3^n。

这样复杂度是 3^n*n^2

对于正解,因为n不是特别的大,而且在树上重新编号

就可以容斥,因为如果在树上任意编号的话,就是每次枚举编号集合,

这样的dp就可以转化为f[i][j]表示将i编号为j的方案数,这样的dp过程复杂度是O(n^3)

所以这样总的复杂度是(2^n*n^3)

 #pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring> #define ll long long
#define N 22
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} ll ans;
int n,m,num;
int a[N],p[N][N];
ll f[N][N];
int cnt,hed[N],nxt[N*],rea[N*]; void add(int u,int v)
{
nxt[++cnt]=hed[u];
hed[u]=cnt;
rea[cnt]=v;
}
void cal(int u,int fa)
{
for (int i=hed[u];i!=-;i=nxt[i])
{
int v=rea[i];
if(v==fa)continue;
cal(v,u);
}
for (int i=;i<=num;i++)
{
f[u][i]=;
for (int j=hed[u];j!=-;j=nxt[j])
{
int v=rea[j];ll w=;
if(v==fa)continue;
for (int k=;k<=num;k++)
if(p[a[i]][a[k]])w+=f[v][k];
f[u][i]*=w;
}
}
}
void dfs(int x,int y,int sta)
{
if(x>n)
{
num=;
for (int i=;i<=n;i++)if(!((<<(i-))&sta))a[++num]=i;
cal(,);
ll res=;
for (int i=;i<=num;i++)
res+=f[][i];
ans+=y*res;
return;
}
dfs(x+,y,sta);
dfs(x+,-y,sta+(<<(x-)));
}
int main()
{
memset(hed,-,sizeof(hed));
n=read(),m=read();
for (int i=;i<=m;i++)
{
int x=read(),y=read();
p[x][y]=,p[y][x]=;
}
for (int i=;i<n;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
dfs(,,);
printf("%lld\n",ans);
}

bzoj 4455 [Zjoi2016]小星星 树形dp&容斥的更多相关文章

  1. 【题解】P3349 [ZJOI2016]小星星 - 子集dp - 容斥

    P3349 [ZJOI2016]小星星 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 小 \(Y\) 是一个心灵手巧 ...

  2. uoj185 [ZJOI2016]小星星 【dp + 容斥】

    题目链接 uoj185 题解 设\(f[i][j]\)表示\(i\)为根的子树,\(i\)号点对应图上\(j\)号点时的方案数 显然这样\(dp\)会使一些节点使用同一个节点,此时总的节点数就不满\( ...

  3. BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]

    4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...

  4. BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)

    传送门 解题思路 首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有.发现限制\(2\)比较容易满足,考虑化简限制\(1\).令\(f ...

  5. BZOJ 4455: [Zjoi2016]小星星

    Sol 容斥原理+树形DP. 这道题用的容斥思想非常妙啊!主要的思路就是让所有点与S集合中的点对应,可以重复对应,并且可以不用对应完全(意思是是S的子集也可以).这样他有未对应完全的,那就减去,从全都 ...

  6. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  7. P5405-[CTS2019]氪金手游【树形dp,容斥,数学期望】

    前言 话说在\(Loj\)下了个数据发现这题的名字叫\(fgo\) 正题 题目链接:https://www.luogu.com.cn/problem/P5405 题目大意 \(n\)张卡的权值为\(1 ...

  8. HDU - 5977 Garden of Eden (树形dp+容斥)

    题意:一棵树上有n(n<=50000)个结点,结点有k(k<=10)种颜色,问树上总共有多少条包含所有颜色的路径. 我最初的想法是树形状压dp,设dp[u][S]为以结点u为根的包含颜色集 ...

  9. BZOJ 3812 主旋律 (状压DP+容斥) + NOIP模拟赛 巨神兵(obelisk)(状压DP)

    这道题跟另一道题很像,先看看那道题吧 巨神兵(obelisk) 题面 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图.欧贝利斯克认为一个没有环的有向图是优美的,请问这张 ...

随机推荐

  1. Navicat-12.0.26的激活

    1.卸载掉早期版本,卸载干净,然后安装最新版Navicat(使用群文件中Iobit uninstaller8卸载) 2.安装完成后将破解补丁复制到安装目录下,运行破解补丁. 4.先patch,然后选择 ...

  2. MySql编码、卸载、启动问题

    一.启动问题 计算机------管理------服务------找到MySql------右键------启动或停止 问题:打开Mysql,点击 MySQL Command Line Client,输 ...

  3. intellij idea 添加动态 user library(java.lang.VerifyError)【转】

    使用IDEA的时候有时要用到eclipse的user library,由于两个IDE导入library的方式不同导致我们找不到导入user library的方法. 查IDEA的官方文档,找到方法如下: ...

  4. javascript getBoundingClientRect()获取元素四个边相对于窗口或文档的位置

    Element.getBoundingClientRect()返回元素的大小及相对于窗口的位置 语法: rectObject=object.getBoundingClientRect(); 返回值是一 ...

  5. python__高级 : 类当作装饰器

    类在创建对象时,会调用 __init__ 初始化一些东西 , 然后 如果类中定义了 __call__ 方法,可以直接用  对象()  这种方法调用,所以可以用类来装饰函数: class Test(ob ...

  6. 【机器学习算法基础+实战系列】SVM

    概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly s ...

  7. C——可变参数

    1.要学可变参数,需要先了解C编译器对栈的管理 做个实验可以得到 #include <stdio.h> void func(int a, char b, int c, int d) { i ...

  8. 13、python中的函数(闭包与装饰器)

    一.嵌套函数 函数的内部又再定义另一个函数,这个函数就叫嵌套函数,里面含函数就叫内部函数. 示例: 二.返回函数 函数可以接收函数对象作为参数,同理函数也能返回一个函数对象作为返回值. 示例: 返回函 ...

  9. 4.Mongodb数据查询2

    1.limit &skip (1)Limit 方法limit():用于读取指定数量的文档 语法: db.集合名称.find().limit(NUMBER) 参数NUMBER表示要获取文档的条数 ...

  10. 成员变量和属性区别(@property那点事儿)

    历史由来: 接触iOS的人都知道,@property声明的属性默认会生成一个_类型的成员变量,同时也会生成setter/getter方法. 但这只是在iOS5之后,苹果推出的一个新机制.看老代码时,经 ...