K-近邻算法的Python实现 : 源代码分析
网上介绍K-近邻算法的样例非常多。其Python实现版本号基本都是来自于机器学习的入门书籍《机器学习实战》,尽管K-近邻算法本身非常easy,但非常多刚開始学习的人对其Python版本号的源码理解不够,所以本文将对其源码进行分析。
什么是K-近邻算法?
简单的说,K-近邻算法採用不同特征值之间的距离方法进行分类。所以它是一个分类算法。
长处:无数据输入假定,对异常值不敏感
缺点:复杂度高
好了,直接先上代码,等会在分析:(这份代码来自《机器学习实战》)
def classify0(inx, dataset, lables, k):
dataSetSize = dataset.shape[0]
diffMat = tile(inx, (dataSetSize, 1)) - dataset
sqDiffMat = diffMat**2
sqDistance = sqDiffMat.sum(axis=1)
distances = sqDistance**0.5
sortedDistances = distances.argsort()
classCount={}
for i in range(k):
label = lables[sortedDistances[i]]
classCount[label] = classCount.get(label, 0) + 1
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
该函数的原理是:
存在一个样本数据集合,也称为训练集,在样本集中每一个数据都存在标签。在我们输入没有标签的新数据后,将新数据的每一个特征与样本集中相应的特征进行比較,然后提取最相似(近期邻)的分类标签。
一般我们仅仅选样本数据集中前K 个最相似的数据。最后。出现次数最多的分类就是新数据的分类。
classify0函数的參数意义例如以下:
inx : 是输入没有标签的新数据,表示为一个向量。
dataset: 是样本集。
表示为向量数组。
labels:相应样本集的标签。
k:即所选的前K。
用于产生数据样本的简单函数:
def create_dataset():
group = array([[1.0, 1.1], [1.0, 1.1], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
注意,array是numpy里面的。
我们须要实现import进来。
from numpy import *
import operator
我们在调用时。
group,labels = create_dataset()
result = classify0([0,0], group, labels, 3)
print result
显然,[0,0]特征向量肯定是属于B 的,上面也将打印B。
知道了这些。刚開始学习的人应该对实际代码还是非常陌生。不急,正文開始了!
源代码分析
dataSetSize = dataset.shape[0]
shape是array的属性,它描写叙述了一个数组的“形状”,也就是它的维度。比方,
In [2]: dataset = array([[1.0, 1.1], [1.0, 1.1], [0, 0], [0, 0.1]]) In [3]: print dataset.shape
(4, 2)
所以,dataset.shape[0] 就是样本集的个数。
diffMat = tile(inx, (dataSetSize, 1)) - dataset
tile(A,rep)函数是基于数组A来构造数组的,详细怎么构造就看第二个參数了。其API介绍有点绕,但简单的使用方法相信几个样例就能明确。
我们看看tile(inx, (4, 1))的结果,
In [5]: tile(x, (4, 1))
Out[5]:
array([[0, 0],
[0, 0],
[0, 0],
[0, 0]])
你看。4扩展的是数组的个数(本来1个。如今4个),1扩展的是每一个数组元素的个数(原来是2个,如今还是两个)。
为证实上面的结论,
In [6]: tile(x,(4,2))
Out[6]:
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
和。
In [7]: tile(x,(2,2))
Out[7]:
array([[0, 0, 0, 0],
[0, 0, 0, 0]])
关于,tile的详细使用方法。请自行查阅API DOC。
得到tile后,减去dataset。
这类似一个矩阵的减法。结果仍是一个 4 * 2的数组。
In [8]: tile(x, (4, 1)) - dataset
Out[8]:
array([[-1. , -1.1],
[-1. , -1.1],
[ 0. , 0. ],
[ 0. , -0.1]])
结合欧式距离的求法,后面的代码就清晰些,对上面结果平方运算,求和。开方。
我们看看求和的方法,
sqDiffMat.sum(axis=1)
当中。
In [14]: sqDiffmat
Out[14]:
array([[ 1. , 1.21],
[ 1. , 1.21],
[ 0. , 0. ],
[ 0. , 0.01]])
求和的结果是对行求和,是一个N*1的数组。
假设要对列求和,
sqlDiffMat.sum(axis=0)
argsort()是对数组升序排序的。
classCount是一个字典,key是标签。value是该标签出现的次数。
这样。算法的一些详细代码细节就清楚了。
K-近邻算法的Python实现 : 源代码分析的更多相关文章
- 用Python从零开始实现K近邻算法
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...
- python 机器学习(二)分类算法-k近邻算法
一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
- 数据挖掘算法(一)--K近邻算法 (KNN)
数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 算法简介 KNN算法的训练样本是多维特征空间向量,其中每个训 ...
- 使用K近邻算法改进约会网站的配对效果
1 定义数据集导入函数 import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1 代表不喜欢,2 代表魅力一般,3 代表极具魅力 Par ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 2.在约会网站上使用k近邻算法
在约会网站上使用k近邻算法 思路步骤: 1. 收集数据:提供文本文件.2. 准备数据:使用Python解析文本文件.3. 分析数据:使用Matplotlib画二维扩散图.4. 训练算法:此步骤不适用于 ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
随机推荐
- git的回退和撤销操作
回退是git的使用中很常用的一个操作,如果清楚各个回退命令的作用,不仅大大加快代码回退的效率,还能避免代码回退造成的事故 1.git reset --hard [commit] 清空暂存和未暂存的更改 ...
- Ajax基础知识 浅析(含php基础语法知识)
1.php基础语法 后缀名为.php的文件 (1) echo 向页面中输入字符串 <?php 所有php相关代码都要写在<?php ?>这个标签之中 echo &q ...
- 洛谷P3120 [USACO15FEB]Cow Hopscotch
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented ...
- MFC的使用——在共享DLL中使用MFC、在静态库中使用MFC(转)
原文转自 https://blog.csdn.net/albertsh/article/details/52838419 1.使用标准Windows库 使用WINDOWS SDK API库,不使用MF ...
- Golang/Go语言/Go IDE/Go windows环境搭建/Go自动提示编译器/GoSublime
Go是Google开发的一种编译型,并发型,并具有垃圾回收功能的编程语言. 罗伯特·格瑞史莫(Robert Griesemer),罗勃·派克(Rob Pike)及肯·汤普逊于2007年9月开始设计Go ...
- python 查询数据
查找课程不及格学生最多的前5名老师的id 表:student 字段名 类型 是否为空 主键 描述 StdID int 否 是 学生ID StdName varchar(100) 否 学生姓名 Gend ...
- pythontips(1):打印模块的属性并执行
import sys import site def print_all(module_): modulelist = dir(module_) length = len(modulelist) fo ...
- PhpStrom弹窗License activation 报 this license BIG3CLIK6F has been cancelled 错误的解决。
将“0.0.0.0 account.jetbrains.com”添加到hosts文件中
- 利用Excel导出sql语句
在工作中遇到了需要用数据库的insert语句,本来是极其简单的事情,但是碰到了有n个(n很大)字段的表,写insert语句就是极其痛苦的事情了,即使只是复制粘贴也是很费力不讨好的一件事.正好手头有ex ...
- Vue.js入门第一课
这个好像比ANGULAR.JS要轻量一些,看看. <!DOCTYPE html> <html> <head> <meta charset="utf- ...