说一说ST表 讲一讲水题
ST表
一、算法介绍
如何快速求解RMQ问题呢?暴力复杂度O(n),线段树复杂度O(n)~O(logn),要是数据规模达到10^7或者更高呢?我们需要一种可以做到O(1)查询的算法,这时就可以用到ST表。
我们用 f[i][j] 表示从 j 位置开始往右 2^i 个数内的最大值,用 g[i][j] 表示从j位置开始往左 2^i 个数内的最大值。所以 f[0][j] , g[0][j] 就为 j 位置上的数,可以在预处理中O(n)处理掉。
接下来我们要求出每个位置的每个 2^i 区间的最大值。可以简单想到, f[1][j] = max( f[0][j] , f[0][j+1] ) , f[2][j] = max( f[1][j] , f[1][j+2]) , f[3][j] = max( f[2][j] , f[2][j+4] ) , ...... , 可以得出,f[i][j] = max( f[i-1][j] , f[i-1][j+(1<<(i-1))] ) , 同理可得, g[i][j]= max( g[i-1][j] , g[i-1][j-(1<<(i-1))] )。
对于每个查询有左端点L和右端点R,对于左端点L,从L开始能覆盖的最广而不超过右端点的倍增次数为log2(R-L+1),从右端点开始能覆盖的最广而不超过右端点的倍增次数也为log2(R-L+1),所以在[L,R]范围内最大值就为 max( f[log2(R-L+1)][L] , g[log2(R-L+1)][R] ) ,这样我们就做到了O(1)查询。
二、水题/裸题
bzoj1699
Description
每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行比赛. 但是为了避免水平悬殊,牛的身高不应该相差太大. John 准备了Q (1 <= Q <= 180,000) 个可能的牛的选择和所有牛的身高 (1 <= 身高 <= 1,000,000). 他想知道每一组里面最高和最低的牛的身高差别. 注意: 在最大数据上, 输入和输出将占用大部分运行时间.
Input
* 第一行: N 和 Q. * 第2..N+1行: 第i+1行是第i头牛的身高.
* 第N+2..N+Q+1行: 两个整数, A 和 B (1 <= A <= B <= N), 表示从A到B的所有牛.
Output
*第1..Q行: 所有询问的回答 (最高和最低的牛的身高差), 每行一个.
Sample Input
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
3
0
题解:用ST表算出各个区间的最大值、最小值即可。
AC代码:(写复杂了但也懒得改了)
- #include <stdio.h>
- #include <cmath>
- #include <algorithm>
- using namespace std;
- int N,Q;
- int h[];
- int to_r_max[][],to_l_max[][];
- int to_r_min[][],to_l_min[][];
- int main(){
- scanf("%d%d",&N,&Q);
- for(int i=;i<=N;++i) scanf("%d",&h[i]);
- for(int i=;i<=N;++i) to_r_max[][i]=to_l_max[][i]=to_r_min[][i]=to_l_min[][i]=h[i];
- for(int i=;i<=log2(N);++i)
- for(int j=;j<=N;++j){
- to_r_max[i][j]=max(to_r_max[i-][j],to_r_max[i-][j+(<<(i-))]);
- to_r_min[i][j]=min(to_r_min[i-][j],to_r_min[i-][j+(<<(i-))]);
- to_l_max[i][j]=max(to_l_max[i-][j],to_l_max[i-][j-(<<(i-))]);
- to_l_min[i][j]=min(to_l_min[i-][j],to_l_min[i-][j-(<<(i-))]);
- }
- for(int i=;i<=Q;++i){
- int l,r;
- scanf("%d%d",&l,&r);
- int lenn=r-l+;
- int h=max(to_r_max[int(log2(lenn))][l],to_l_max[int(log2(lenn))][r]);
- int s=min(to_r_min[int(log2(lenn))][l],to_l_min[int(log2(lenn))][r]);
- printf("%d\n",h-s);
- }
- return ;
- }
说一说ST表 讲一讲水题的更多相关文章
- 没讲明白的水题orz
有一道解释程序的水题没给非计算机专业的同学讲明白orz,在这里再练一下.. 源代码完全没有缩进真是难以忍受.. p.s.懂递归就不用看了#include <stdio.h> int n = ...
- st表树状数组入门题单
预备知识 st表(Sparse Table) 主要用来解决区间最值问题(RMQ)以及维护区间的各种性质(比如维护一段区间的最大公约数). 树状数组 单点更新 数组前缀和的查询 拓展:原数组是差分数组时 ...
- Leetcode——171.Excel表列序号【水题】
@author: ZZQ @software: PyCharm @file: leetcode171_Excel表列序号.py @time: 2018/11/22 15:29 要求: 给定一个Exce ...
- skkyk:题解 洛谷P3865 【【模板】ST表】
我不会ST表 智推推到这个题 发现标签中居然有线段树..? 于是贸然来了一发线段树 众所周知,线段树的查询是log(n)的 题目中"请注意最大数据时限只有0.8s,数据强度不低,请务必保证你 ...
- [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)
[51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...
- [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)
Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...
- 浅谈ST表
发现自己学的一直都是假的ST表QWQ. ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到$O(nlogn)$预处理,$O(1)$查询最值 算法 ST表是利用 ...
- ST表学习笔记
ST表是一种利用DP思想求解最值的倍增算法 ST表常用于解决RMQ问题,即求解区间最值问题 接下来以求最大值为例分步讲解一下ST表的建立过程: 1.定义 f[i][j]表示[i,i+2j-1]这个长度 ...
- ST表与树状数组
ST表 st表可以解决区间最值的问题.可以做到O(nlogn)预处理 ,O(1)查询,但是不支持修改. st表的大概思路就是用st[i][j]来表示从i开始的2的j次方个树中的最值,查询时就从左端点 ...
随机推荐
- Qt Creator : Read an image from resources
最近两周碰到的一个问题是: opencv无法读取qt中的资源文件. 参考网址:https://stackoverflow.com/questions/45233559/qt-creator-read- ...
- 爬虫:Scrapy13 - 发送 email
虽然 Python 通过 smtplib 库使得发送 email 变得非常简单,Scrapy 仍然提供了自己的实现.该功能十分易用,同时由于采用了 Twisted 非阻塞式(non-blocking) ...
- HDU 4747 Mex ( 线段树好题 + 思路 )
参考:http://www.cnblogs.com/oyking/p/3323306.html 相当不错的思路,膜拜之~ 个人理解改日补充. #include <cstdio> #incl ...
- HDU 3111 Sudoku ( Dancing Links 精确覆盖模型 )
推荐两篇学DLX的博文: http://bbs.9ria.com/thread-130295-1-1.html(这篇对DLX的工作过程演示的很详细) http://yzmduncan.iteye.co ...
- C#中的&运算
2是一个比较特殊的数. 2的1次方2 2的2次方4 2的3次方8 2的4次方16 2的5次方32 2的6次方64 2的7次方128 2的8次方256 2的9次方512 2的10次方1024 2的11次 ...
- 使用ADO.NET 实体数据模型连接MySql
原文:使用ADO.NET 实体数据模型连接MySql 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/a123_z/article/details/8 ...
- PB常用事件
1.window中的事件 事件名 触发的时机 01.Activate 在窗口激活之前触发 02.Clicked 当用户用 ...
- Redis 与 Spring 集成
配置applicationContext.xml <!-- 连接池配置 --> <bean id="jedisPoolConfig" class="re ...
- 论文笔记《Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data Is Continuous and Weakly Labelled》
一.概述 这个是最近的核心工作了,基本上都是靠着这篇paper的model过日子了啊.. 论文主要讲的是hand gesture recognition,实际上是用googlenet做的一个class ...
- nginx配置C compiler cc is not found
1.需求 linux安装个编译器 参考资料:http://blog.csdn.net/testcs_dn/article/details/51461750