Codeforces 57C (1-n递增方案数,组合数取模,lucas)
这个题相当于求从1-n的递增方案数,为C(2*n-1,n);
取模要用lucas定理,附上代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
LL mod=1000000007;
LL quick_mod(LL a,LL b){
LL ans=1%mod;
while(b){
if(b&1){
ans=ans*a%mod;
b--;
}
b>>=1;
a=a*a%mod;
}
return ans;
}
LL C(LL n,LL m){
if(m>n)return 0;
LL ans=1;
for(int i=1;i<=m;i++){
LL a=(n+i-m)%mod;
LL b=i%mod;
ans=ans*(a*quick_mod(b,mod-2)%mod)%mod;
}
return ans;
}
LL lucas(LL n,LL m){
if(m==0)return 1;
return C(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
}
int main(){
LL a,ans;
scanf("%lld",&a);
ans=(2*lucas(a*2-1,a)%mod-a+mod)%mod;
printf("%lld\n",ans);
}
Codeforces 57C (1-n递增方案数,组合数取模,lucas)的更多相关文章
- 组合数取模&&Lucas定理题集
题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020 输出组合数C(n, m) mod p (1 ...
- 组合数取模Lucas定理及快速幂取模
组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1) , 此时较简单,在O(n2)可承受的情况下组合数的计算可以 ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)
数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...
- [转]组合数取模 Lucas定理
对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...
- 排列组合+组合数取模 HDU 5894
// 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
随机推荐
- HTML中可以连接资源的标签集合
1.<a>标签,href属性指示链接的目标,可以是HTML也可以是内部css样式.<a href="http://www.w3school.com.cn"> ...
- GEF入门实例_总结_01_教程、源码、开发环境准备
一.前言 最近在学Eclipse插件开发,发现了一个比较好的GEF入门教程,并且按照教程上的操作,一步步实现了一个入门Demo,在此感谢作者的贡献. 好记性不如烂笔头,故决定总结一下这段时间的学习心得 ...
- 201621123014《Java程序设计》第十周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...
- spring学习-5
spring表达式SpEL 语法#{..},为bean的属性进行动态赋值 通过bean的id对bean进行引用 调用方法以及引用对象中的属性 计算表达式的值 正则表达式的匹配 修改Address.ja ...
- 程序员如何编写好开发技术文档 如何编写优质的API文档工作
编写技术文档,是令众多开发者望而生畏的任务之一.它本身是一件费时费力才能做好的工作.可是大多数时候,人们却总是想抄抄捷径,这样做的结果往往非常令人遗憾的,因为优质的技术文档是决定你的项目是否引人关注的 ...
- NET持续集成与自动化部署
https://www.cnblogs.com/hunternet/p/9590287.html 相信每一位程序员都经历过深夜加班上线的痛苦!而作为一个加班上线如家常便饭的码农,更是深感其痛.由于我们 ...
- Redis底层探秘(二):链表和跳跃表
链表简介 链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地跳转链表的长度. 作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为Redis使用C语言并没有内 ...
- LeetCode 305. Number of Islands II
原题链接在这里:https://leetcode.com/problems/number-of-islands-ii/ 题目: A 2d grid map of m rows and n column ...
- 应用层-day02
web与HTTP web的应用层协议时超文本传输协议(HyperText Transfer Protocol HTTP) HTTP是由两个程序实现的:一个客户端程序和一个服务器程序. HTTP定义了w ...
- java中List、Map、Set、Collection、Stack、Queue等的使用
java中这几个东西是比较常用的,虽然我用的不多,也正是因为用的不多,所以我一直搞不清楚他们之间的具体用法以及相互之间的关系,现在特单独作为一个东西来总结一下. 本文参考一下资料: 1.<jav ...