LOJ#137. 最小瓶颈路 加强版(Kruskal重构树 rmq求LCA)
题意
三倍经验哇咔咔
#6021. 「from CommonAnts」寻找 LCR
Sol
首先可以证明,两点之间边权最大值最小的路径一定是在最小生成树上
考虑到这题是边权的最大值,直接把重构树建出来
然后查LCA处的权值即可
输入文件过大,需要用RMQ算法求LCA
// luogu-judger-enable-o2
#include<bits/stdc++.h>
const int MAXN = 1e6 + 10;
using namespace std;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, Q, S, tot, dfn[MAXN], rev[MAXN], dep[MAXN], id[MAXN][21], lg2[MAXN], rd[MAXN];
vector<int> v[MAXN];
void dfs(int x, int fa) {
dfn[x] = ++tot; dep[x] = dep[fa] + 1; id[tot][0] = x;
for(int i = 0, to; i < v[x].size(); i++) {
if((to = v[x][i]) == fa) continue;
dfs(to, x);
id[++tot][0] = x;
}
}
void RMQ() {
for(int i = 2; i <= tot; i++) lg2[i] = lg2[i >> 1] + 1;
for(int j = 1; j <= 20; j++) {
for(int i = 1; (i + (1 << j) - 1) <= tot; i++) {
int r = i + (1 << (j - 1));
id[i][j] = dep[id[i][j - 1]] < dep[id[r][j - 1]] ? id[i][j - 1] : id[r][j - 1];
}
}
}
int Query(int l, int r) {
if(l > r) swap(l, r);
int k = lg2[r - l + 1];
return dep[id[l][k]] < dep[id[r - (1 << k) + 1][k]] ? id[l][k] : id[r - (1 << k) + 1][k];
}
int main() {
freopen("a.in", "r", stdin);
N = read(); Q = read(); S = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y); v[y].push_back(x);
}
dfs(S, 0);
RMQ();
while(Q--) {
int x = read(), y = read();
printf("%d\n", Query(dfn[x], dfn[y]));
}
return 0;
}
LOJ#137. 最小瓶颈路 加强版(Kruskal重构树 rmq求LCA)的更多相关文章
- loj#137 最小瓶颈路 加强版
分析 我们知道答案一定再最小生成树上 于是我们按边权从小到大建立kruskal重构树 然后每次查询lca的值即可 由于询问较多采用st表维护lca 代码 格式化代码 #include<bits/ ...
- 【BZOJ-3545&3551】Peaks&加强版 Kruskal重构树 + 主席树 + DFS序 + 倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1202 Solved: 321[Submit][Sta ...
- [BZOJ3551][ONTAK2010]Peaks(加强版)(Kruskal重构树,主席树)
3551: [ONTAK2010]Peaks加强版 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2438 Solved: 763[Submit][ ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增
建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...
- 【BZOJ 3551】[ONTAK2010] Peaks加强版 Kruskal重构树+树上倍增+主席树
这题真刺激...... I.关于Kruskal重构树,我只能开门了,不过补充一下那玩意还是一棵满二叉树.(看一下内容之前请先进门坐一坐) II.原来只是用树上倍增求Lca,但其实树上倍增是一种方法,L ...
- BZOJ3551 Peaks加强版 [Kruskal重构树,主席树]
BZOJ 思路 我觉得这题可持久化线段树合并也可以做 我觉得这题建出最小生成树之后动态点分治+线段树也可以做 还是学习一下Kruskal重构树吧-- Kruskal重构树,就是在做最小生成树的时候,如 ...
- LOJ题解#136. 最小瓶颈路 DFS+Kruskal
题目链接: https://loj.ac/problem/136 思路: 在我的这篇博客中已经讲到什么是最短瓶颈路,同时给出了一个用Kruskal求最短瓶颈路的一个简洁易懂的方法,然而这道题目可以看作 ...
- 【BZOJ 3545】【ONTAK 2010】Peaks & 【BZOJ 3551】【ONTAK 2010】Peaks加强版 Kruskal重构树
sunshine的A题我竟然调了一周!!! 把循环dfs改成一个dfs就可以,,,我也不知道为什么这样就不会RE,但它却是A了,,, 这周我一直在调这个题,总结一下智障错误: 1.倍增的范围设成了n而 ...
随机推荐
- poj 1743 Musical Theme(最长重复子串 后缀数组)
poj 1743 Musical Theme(最长重复子串 后缀数组) 有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复 ...
- 关于cuda拷贝的速度测试
由于没有使用profiler,仅仅通过简单的传输函数测试,如下测试了10000个点,1000000个点,100000000个点的速度: 均按时钟周期来计时,通过MAX调整数据 int main(){ ...
- 基于vue实现上下滑动翻页效果
18年年底的时候,一直在做年度报告的H5页面,因为项目需要,需要实现上下滑动翻页,并且上滑的页面比正常页面的比例要缩小一定比例. 效果类似于http://www.17sucai.com/pins/de ...
- 老男孩Day5作业:电子银行购物商城
1.作业需求: 模拟实现一个ATM + 购物商城程序 额度 15000或自定义 实现购物商城,买东西加入 购物车,调用信用卡接口结账 可以提现,手续费5% 支持多账户登录支持账户间转账 记录每月日常消 ...
- cookie和session的使用和区别
cookie:存储在浏览器 存值:setcookie("名字",值,过期时间.秒,哪一个文件夹)//文件夹不写一般默认整个网站都可以 setcookie("usernam ...
- ArcGIS-各类问题
arcgis 10.4破解方法*注意!Desktop,Engine,Server必须为同一版本 1.先安装License10.4 2.再安装Desktop10.4 3.再安装Engine10.4 4. ...
- php 常见递归实例
//计算数组{1,1,2,3,5,8.......} 第n位值 function Process1($i){ if ($i == 0) return 0; if ($i == 1) return 1; ...
- 钉钉jsapi免登获取code中,出现对应企业没有某域名微应用
在使用jsapi中.出现 {"errorMessage":"对应企业没有某域名微应用",:"errorCode":"3" ...
- POJ 3067 Japan (树状数组 && 控制变量)
题意: 西海岸和东海岸有分别有n (1~n)个和m (1~m)个城市, 两个海岸的城市之间有k条公路连通, 公路会相交, 现在给出城市和公路的信息问你由这些公路组成的复杂交通有多少个交点 (如果两个条 ...
- stark组件之创建
stark组件之需求 仿照Django中的admin , 开发了自己的stark组件,实现类似数据库客户端的功能,对数据进行增删改查 . stark之创建 1.在项目中 创建stark应用,app01 ...