在windows远程提交任务给Hadoop集群(Hadoop 2.6)
我使用3台Centos虚拟机搭建了一个Hadoop2.6的集群。希望在windows7上面使用IDEA开发mapreduce程序,然后提交的远程的Hadoop集群上执行。经过不懈的google终于搞定
1:org.apache.hadoop.util.Shell$ExitCodeException: /bin/bash: line 0: fg: no job control
2:Stack trace: ExitCodeException exitCode=1:
3:Error: Could not find or load main class org.apache.hadoop.mapreduce.v2.app.MRAppMaster
4:Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class WordCount$Map not found
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapred.remote.os</name>
<value>Linux</value>
</property>
<property>
<name>mapreduce.app-submission.cross-platform</name>
<value>true</value>
</property>
<property>
<name>mapreduce.application.classpath</name>
<value>
/opt/hadoop-2.6.0/etc/hadoop,
/opt/hadoop-2.6.0/share/hadoop/common/*,
/opt/hadoop-2.6.0/share/hadoop/common/lib/*,
/opt/hadoop-2.6.0/share/hadoop/hdfs/*,
/opt/hadoop-2.6.0/share/hadoop/hdfs/lib/*,
/opt/hadoop-2.6.0/share/hadoop/mapreduce/*,
/opt/hadoop-2.6.0/share/hadoop/mapreduce/lib/*,
/opt/hadoop-2.6.0/share/hadoop/yarn/*,
/opt/hadoop-2.6.0/share/hadoop/yarn/lib/*
</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
</configuration>
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master:8032</value>
</property>
<property>
<name>yarn.application.classpath</name>
<value>
/opt/hadoop-2.6.0/etc/hadoop,
/opt/hadoop-2.6.0/share/hadoop/common/*,
/opt/hadoop-2.6.0/share/hadoop/common/lib/*,
/opt/hadoop-2.6.0/share/hadoop/hdfs/*,
/opt/hadoop-2.6.0/share/hadoop/hdfs/lib/*,
/opt/hadoop-2.6.0/share/hadoop/mapreduce/*,
/opt/hadoop-2.6.0/share/hadoop/mapreduce/lib/*,
/opt/hadoop-2.6.0/share/hadoop/yarn/*,
/opt/hadoop-2.6.0/share/hadoop/yarn/lib/*
</value>
</property>
</configuration>
package com.gaoxing.hadoop; import java.io.IOException;
import java.security.PrivilegedExceptionAction;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.security.UserGroupInformation;
import org.apache.hadoop.util.GenericOptionsParser; public class WordCount {
//继承mapper接口,设置map的输入类型为<Object,Text>
//输出类型为<Text,IntWritable>
public static class Map extends Mapper<Object,Text,Text,IntWritable>{
//one表示单词出现一次
private static IntWritable one = new IntWritable(1);
//word存储切下的单词
private Text word = new Text();
public void map(Object key,Text value,Context context) throws IOException,InterruptedException{
//对输入的行切词
StringTokenizer st = new StringTokenizer(value.toString());
while(st.hasMoreTokens()){
word.set(st.nextToken());//切下的单词存入word
context.write(word, one);
}
}
}
//继承reducer接口,设置reduce的输入类型<Text,IntWritable>
//输出类型为<Text,IntWritable>
public static class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
//result记录单词的频数
private static IntWritable result = new IntWritable();
public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException,InterruptedException{
int sum = 0;
//对获取的<key,value-list>计算value的和
for(IntWritable val:values){
sum += val.get();
}
//将频数设置到result
result.set(sum);
//收集结果
context.write(key, result);
}
}
/**
* @param args
*/
public static void main(String[] args) throws Exception{
Configuration conf = new Configuration();
// conf.set("mapred.remote.os","Linux");
// conf.set("yarn.resourcemanager.address","master:8032");
// conf.set("mapreduce.framework.name","yarn");
conf.set("mapred.jar","D:\\IdeaProjects\\hadooplearn\\out\\artifacts\\hadoo.jar");
//conf.set("mapreduce.app-submission.cross-platform","true");
Job job = Job.getInstance(conf);
job.setJobName("test");
//配置作业各个类
job.setJarByClass(WordCount.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("hdfs://master:9000/tmp/hbase-env.sh"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/tmp/out11"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

在windows远程提交任务给Hadoop集群(Hadoop 2.6)的更多相关文章
- docker搭建Hadoop集群
一个分布式系统基础架构,由Apache基金会所开发. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储. 首先搭建Docker环境,Docker版本大于1.3. ...
- 深入理解Hadoop集群和网络
导读:云计算和Hadoop中网络是讨论得相对比较少的领域.本文原文由Dell企业技术专家Brad Hedlund撰写,他曾在思科工作多年,专长是数据中心.云网络等.文章素材基于作者自己的研究.实验和C ...
- 深入理解Hadoop集群和网络【转】
http://os.51cto.com/art/201211/364374.htm 本文将着重于讨论Hadoop集群的体系结构和方法,及它如何与网络和服务器基础设施的关系.最开始我们先学习一下Hado ...
- Linux上搭建Hadoop集群
本文将为初学者的搭建简单的伪分布式集群,将搭建一台虚拟机,用于学习Hadoop 工具:vm虚拟机,centOS7,jdk-8,Hadoop2.7,xftp,xshell 用户:在虚拟机中创建一个had ...
- hadoop集群的安装
Hadoop集群安装 1.配置JDK环境和设置主机名,本地解析 JDK环境教程: http://www.cnblogs.com/wangweiwen/p/6104189.html 本地解析: vim ...
- Eclipse远程提交hadoop集群任务
文章概览: 1.前言 2.Eclipse查看远程hadoop集群文件 3.Eclipse提交远程hadoop集群任务 4.小结 1 前言 Hadoop高可用品台搭建完备后,参见<Hadoop ...
- 本地idea开发mapreduce程序提交到远程hadoop集群执行
https://www.codetd.com/article/664330 https://blog.csdn.net/dream_an/article/details/84342770 通过idea ...
- windows下eclipse远程连接hadoop集群开发mapreduce
转载请注明出处,谢谢 2017-10-22 17:14:09 之前都是用python开发maprduce程序的,今天试了在windows下通过eclipse java开发,在开发前先搭建开发环境.在 ...
- Windows平台开发Mapreduce程序远程调用运行在Hadoop集群—Yarn调度引擎异常
共享原因:虽然用一篇博文写问题感觉有点奢侈,但是搜索百度,相关文章太少了,苦苦探寻日志才找到解决方案. 遇到问题:在windows平台上开发的mapreduce程序,运行迟迟没有结果. Mapredu ...
随机推荐
- PKUSC2018 Slay The Spire
有攻击牌和强化牌各 $n$ 张,强化牌可以让之后所有攻击牌攻击力乘一个大于 $1$ 的系数,攻击牌可以造成伤害 求所有“抽出 $m$ 张然后打 $k$ 张”能造成的伤害之和 $k,m,2n \leq ...
- eShopOnWeb
eShopOnWeb https://www.cnblogs.com/sheng-jie/p/9616675.html 构建现代Web应用 1.引言 eShopOnWeb是基于ASP.NET Core ...
- docker容器与宿主机之间内容拷贝
来自:http://blog.csdn.net/yangzhenping/article/details/43667785 常用的方式有3种: 从容器内拷贝文件到主机上 docker cp <c ...
- keepalived之 Keepalived 原理(定义、VRRP 协议、VRRP 工作机制)
1.Keepalived 定义 Keepalived 是一个基于VRRP协议来实现的LVS服务高可用方案,可以利用其来避免单点故障.一个LVS服务会有2台服务器运行Keepalived,一台为主服务器 ...
- hl7 V2中Message Control ID的含义及应用
HL7 v2中的MSH,MSA段都有Message Control ID. 有几点需要注意: 1.所有的MessageControlID必须唯一 2.对于MSH中的MessageControlID, ...
- 机器学习:集成学习(OOB 和 关于 Bagging 的更多讨论)
一.oob(Out - of - Bag) 定义:放回取样导致一部分样本很有可能没有取到,这部分样本平均大约有 37% ,把这部分没有取到的样本称为 oob 数据集: 根据这种情况,不对数据集进行 t ...
- IIS:配置参数
ylbtech-IIS:配置参数 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 6.返回顶部 7.返回顶部 8.返回顶部 9.返回顶部 ...
- [Python Study Notes]pd.read_csv()函数读取csv文件绘图
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...
- CentOS 6.3安装jdk(笔记整理)
1. 下载bin文件,切忌oracle上现在下载到的旧版本的jdk的bin都是网页(执行会报错,见本文最后的截图),他们需要登录oracle后才能下载,所以我这里的url是从googlecode里觅来 ...
- MySQL存储引擎 -- MyISAM 与 InnoDB 实现
一.MyISAM索引实现MyISAM引擎使用B树作为索引结构,叶节点的data域存放的是数据记录的地址. MyISAM主键索引这里设表一共有三列,假设我们以Col1为主键,Col2为辅助索引.则下图是 ...