扩展欧拉定理:$a^{b} \equiv a^{b Mod \varphi  (p) + \varphi  (p)}  (Mod  p)  $ $(b \geq \varphi (p))$ 。

这道题中$\varphi (p)$一定是一个偶数,所以余数为$0$。

这样子的话只需要递归求解就可以了,可以知道一定不会超过$log$层。

时间复杂度$O(maxN + Tlognlogn)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = 1e7 + ; int testCase, pCnt, pri[N];
ll n, phi[N];
bool np[N]; template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} void sieve() {
phi[] = 1LL;
for(int i = ; i < N; i++) {
if(!np[i]) pri[++pCnt] = i, phi[i] = i - ;
for(int j = ; j <= pCnt && i * pri[j] < N; j++) {
np[i * pri[j]] = ;
if(i % pri[j] == ) {
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
phi[i * pri[j]] = phi[i] * (pri[j] - );
}
}
} inline ll pow(ll a, ll b, ll P) {
ll res = 1LL;
for(; b > ; b >>= ) {
if(b & ) res = res * a % P;
a = a * a % P;
}
return res;
} ll solve(ll now) {
if(now == ) return ;
return pow(2LL, phi[now] + solve(phi[now]), now);
} int main() {
sieve();
for(read(testCase); testCase--; ) {
read(n);
printf("%lld\n", solve(n));
}
return ;
}

Luogu 4139 上帝与集合的正确用法的更多相关文章

  1. Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925

    题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...

  2. luogu P4139 上帝与集合的正确用法(扩展欧拉定理)

    本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...

  3. Luogu P4139 上帝与集合的正确用法

    题目链接:Click here Solution: 这道题就考你会不会扩展欧拉定理,根据扩展欧拉定理可知 \[ a^b \equiv a^{(b\,mod\,\varphi(p))+\varphi(p ...

  4. 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)

    [BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...

  5. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  6. 扩展欧拉定理【洛谷P4139】 上帝与集合的正确用法

    P4139 上帝与集合的正确用法 \(2^{2^{2^{\dots}}}\bmod p\) 卡最优解倒数第一祭. 带一下扩展欧拉定理就好了. code: #include <iostream&g ...

  7. 【BZOJ3884】上帝与集合的正确用法 [欧拉定理]

    上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T ...

  8. bzoj 3884 上帝与集合的正确用法 指数循环节

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些 ...

  9. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

随机推荐

  1. mysql-jdbc创建connection理解

    jdbc源码分析(http://blog.csdn.net/brilliancezhou/article/details/5499738) 创建JDBC连接代码 Class.forName(" ...

  2. Apache Kafka:下一代分布式消息系统【转载】

    简介 Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和可复制的提交 ...

  3. ShadowGun 图形技术分析

    https://zhuanlan.zhihu.com/p/27966138 ShadowGun虽然是2011年的移动平台的游戏demo,但是里面的很多优化技巧到现在来看都是很值得学习的,毕竟是上过西瓜 ...

  4. JvisualVm添加远程监控

    一.Weblogic远程监控 1.首先需要在远程的weblogic的域下面,找到/bin/ setDomainEnv.sh ,需要在此文件下加入如下内容: -Dcom.sun.management.j ...

  5. HDU5475(线段树)

    An easy problem Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. Boost.Asio基本原理(CSDN也有Markdown了,好开森)

    Boost.Asio基本原理 这一章涵盖了使用Boost.Asio时必须知道的一些事情.我们也将深入研究比同步编程更复杂.更有乐趣的异步编程. 网络API 这一部分包含了当使用Boost.Asio编写 ...

  7. 2018年长沙理工大学第十三届程序设计竞赛 Dzzq的离散数学教室1

    Dzzq的离散数学教室1 链接:https://www.nowcoder.com/acm/contest/96/D来源:牛客网 zzq的离散数学教室1 时间限制:C/C++ 1秒,其他语言2秒 空间限 ...

  8. idea debug的时候 启动起来超级慢

  9. &(((struct A*)NULL)->m_float)---offsetof

    问题描述: struct A { int m_int; float m_float; }; int main(void) { printf("%p",&(((struct ...

  10. Xcode的Refactor使用

    最近在看<重构>的书,想到Xcode有一个Refactor的功能,不知道您用的多不多,用这个功能在我们开发过程中,可以提高开发效率. Refactor 右键显示 Refactor 一.Re ...