传送门

题目大意

让你构造一个有向图,使得从1到n有L条不同路径且长度分别是0~L-1。

分析

我们不难想到每一对相邻点之间连一条权值为0的边,之后二进制分解,将每一对点之间连一个权值为2^i的边,但是我们会发现这样在一些情况下还会剩下一些值不能覆盖。如果将剩下的值一一连边肯定会炸。于是我们还是利用二进制的思想,从最后一个点开始向前枚举,如果在这个点加上一条权值为之前不能构成的值中的最小值的边构成的数不会越界则加上这一条边。描述比较粗略,详见代码。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
const int LOG = ;
int ans[],ans2[],ans3[];
int main(){
int n,m=,l,i,j,k;
scanf("%d",&l);
for(i=;i<=LOG;i++)
if((<<i)>l){
n=i;
break;
}
for(i=;i<n;i++){
ans[++m]=i;
ans2[m]=i+;
ans3[m]=;
ans[++m]=i;
ans2[m]=i+;
ans3[m]=<<(i-);
}
int t=<<(n-);
l-=t;
for(i=n-;i>;i--)
if((<<(i-))<=l){
ans[++m]=i;
ans2[m]=n;
ans3[m]=t;
t+=<<(i-);
l-=<<(i-);
}
printf("%d %d\n",n,m);
for(i=;i<=m;i++)
printf("%d %d %d\n",ans[i],ans2[i],ans3[i]);
return ;
}

ARC102D All Your Paths are Different Lengths的更多相关文章

  1. AtCoder Regular Contest 102 D - All Your Paths are Different Lengths

    D - All Your Paths are Different Lengths 思路: 二进制构造 首先找到最大的t,使得2^t <= l 然后我们就能构造一种方法使得正好存在 0 到 2^t ...

  2. 【atcoder】All Your Paths are Different Lengths[arc102D](乱搞)

    题目传送门:https://arc102.contest.atcoder.jp/tasks/arc102_b 这道题有点毒瘤啊,罚时上天.. 显然若$ l=2^n $那么就可以直接二进制拆分,但是如果 ...

  3. AtCoder Regular Contest 102 (ARC102) D All Your Paths are Different Lengths 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/ARC102D.html 题目传送门 - ARC102D 题意 给定 $L$,请你构造一个节点个数为 $n$ ,边 ...

  4. [Arc102B]All Your Paths are Different Lengths_构造_二进制拆分

    All Your Paths are Different Lengths 题目链接:https://atcoder.jp/contests/arc102/tasks/arc102_b 题解: 构造题有 ...

  5. Optimal Milking 分类: 图论 POJ 最短路 查找 2015-08-10 10:38 3人阅读 评论(0) 收藏

    Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 13968 Accepted: 5044 Case ...

  6. POJ2112 Optimal Milking (网络流)(Dinic)

                                             Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K T ...

  7. poj 2112 Optimal Milking (二分图匹配的多重匹配)

    Description FJ has moved his K ( <= K <= ) milking machines <= C <= ) cows. A ..K; the c ...

  8. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  9. POJ2112_Optimal Milking(网洛流最大流Dinic+最短路Flody+二分)

    解题报告 农场有k个挤奶机和c头牛,每头牛到每一台挤奶机距离不一样,每台挤奶机每天最多挤m头牛的奶. 寻找一个方案,安排每头牛到某一挤奶机挤奶,使得c头牛须要走的全部路程中的最大路程的最小值. 要使每 ...

随机推荐

  1.  P2152 [SDOI2009]SuperGCD (luogu)

    Stein算法是一种计算两个数最大公约数的算法,是针对欧几里德算法在对大整数进行运算时,需要试商导致增加运算时间的缺陷而提出的改进算法. 算法思想: 由J. Stein 1961年提出的Stein算法 ...

  2. brew安装php和扩展

    brew install homebrew/php/php56 --with-apache 报错: checking if the location of ZLIB install directory ...

  3. 浅学soap--------1

    无wsdl文件: Clint.php //客户端 <?php $soap = new SoapClient(null,array('uri'=>'server','location'=&g ...

  4. UVA - 11212 Editing a Book (IDA*)

    给你一个长度为n(n<=9)的序列,每次可以将一段连续的子序列剪切到其他地方,问最少多少次操作能将序列变成升序. 本题最大的坑点在于让人很容易想到许多感觉挺正确但实际却不正确的策略来避开一些看似 ...

  5. leetcode_sql_2,183

    183. Customers Who Never Order Suppose that a website contains two tables, the Customers table and t ...

  6. bzoj 3771 Triple——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 把方案作为系数.值作为指数,两项相乘就是系数相乘.指数相加,符合意义. 考虑去重.先自 ...

  7. BZOJ4358:permu

    浅谈\(K-D\) \(Tree\):https://www.cnblogs.com/AKMer/p/10387266.html 题目传送门:https://lydsy.com/JudgeOnline ...

  8. 序章:为什么学习使用kotlin、及kotlin的一些碎碎念

    为什么使用kotlin? 当然是因为项目目前的开发语言是kotlin啊! 一方面是想能够尽快适应项目,另一方面,kotlin这门语言独特的语法,确实很吸引我,也让我意识到java代码在某些程度上的繁琐 ...

  9. Erlang pool management -- RabbitMQ worker_pool 2

    上一篇已经分析了rpool 的三个module , 以及简单的物理关系. 这次主要分析用户进程和 worker_pool 进程还有worker_pool_worker 进程之间的调用关系. 在开始之前 ...

  10. kubernetes 学习 创建cronjob

    POM.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...