HDU 5901 Count primes (1e11内的素数个数) -2016 ICPC沈阳赛区网络赛
题意:求[1,n]有多少个素数,1<=n<=10^11。时限为6000ms。
官方题解:一个模板题, 具体方法参考wiki或者Four Divisors。
题解:给出两种代码。
第一种方法Meisell-Lehmer算法只需265ms。
第二种方法不能运行但是能AC,只需35行。
第一种:
//Meisell-Lehmer
#include<cstdio>
#include<cmath>
using namespace std;
#define LL long long
const int N = 5e6 + ;
bool np[N];
int prime[N], pi[N];
int getprime()
{
int cnt = ;
np[] = np[] = true;
pi[] = pi[] = ;
for(int i = ; i < N; ++i)
{
if(!np[i]) prime[++cnt] = i;
pi[i] = cnt;
for(int j = ; j <= cnt && i * prime[j] < N; ++j)
{
np[i * prime[j]] = true;
if(i % prime[j] == ) break;
}
}
return cnt;
}
const int M = ;
const int PM = * * * * * * ;
int phi[PM + ][M + ], sz[M + ];
void init()
{
getprime();
sz[] = ;
for(int i = ; i <= PM; ++i) phi[i][] = i;
for(int i = ; i <= M; ++i)
{
sz[i] = prime[i] * sz[i - ];
for(int j = ; j <= PM; ++j) phi[j][i] = phi[j][i - ] - phi[j / prime[i]][i - ];
}
}
int sqrt2(LL x)
{
LL r = (LL)sqrt(x - 0.1);
while(r * r <= x) ++r;
return int(r - );
}
int sqrt3(LL x)
{
LL r = (LL)cbrt(x - 0.1);
while(r * r * r <= x) ++r;
return int(r - );
}
LL getphi(LL x, int s)
{
if(s == ) return x;
if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
if(x <= prime[s]*prime[s]) return pi[x] - s + ;
if(x <= prime[s]*prime[s]*prime[s] && x < N)
{
int s2x = pi[sqrt2(x)];
LL ans = pi[x] - (s2x + s - ) * (s2x - s + ) / ;
for(int i = s + ; i <= s2x; ++i) ans += pi[x / prime[i]];
return ans;
}
return getphi(x, s - ) - getphi(x / prime[s], s - );
}
LL getpi(LL x)
{
if(x < N) return pi[x];
LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - ;
for(int i = pi[sqrt3(x)] + , ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + ;
return ans;
}
LL lehmer_pi(LL x)
{
if(x < N) return pi[x];
int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
int b = (int)lehmer_pi(sqrt2(x));
int c = (int)lehmer_pi(sqrt3(x));
LL sum = getphi(x, a) +(LL)(b + a - ) * (b - a + ) / ;
for (int i = a + ; i <= b; i++)
{
LL w = x / prime[i];
sum -= lehmer_pi(w);
if (i > c) continue;
LL lim = lehmer_pi(sqrt2(w));
for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - );
}
return sum;
}
int main()
{
init();
LL n;
while(~scanf("%lld",&n))
{
printf("%lld\n",lehmer_pi(n));
}
return ;
}
第二种:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn=1e11;
const ll maxp=sqrt(maxn)+;
ll f[maxp],g[maxp];
ll solve(ll n)
{
ll i,j,m;
for(m=;m*m<=n;m++)
f[m]=n/m-;
for(i=;i<=m;i++)
g[i]=i-;
for(i=;i<=m;i++)
{
if(g[i]==g[i-]) continue;
for(j=;j<=min(m-,n/i/i);j++)
{
if(i*j<m)
f[j]-=f[i*j]-g[i-];
else
f[j]-=g[n/i/j]-g[i-];
}
for(j=m;j>=i*i;j--)
g[j]-=g[j/i]-g[i-];
}
return f[];
}
int main()
{
ll n;
while(scanf("%lld",&n)!=EOF)
printf("%lld\n",solve(n));
return ;
}
HDU 5901 Count primes (1e11内的素数个数) -2016 ICPC沈阳赛区网络赛的更多相关文章
- HDU 5878 I Count Two Three (打表+二分查找) -2016 ICPC 青岛赛区网络赛
题目链接 题意:给定一个数n,求大于n的第一个只包含2357四个因子的数(但是不能不包含其中任意一种),求这个数. 题解:打表+二分即可. #include <iostream> #inc ...
- HDU 5894 hannnnah_j’s Biological Test (组合数学) -2016 ICPC沈阳赛区网络赛
题目链接 #include <map> #include <queue> #include <math.h> #include <stdio.h> #i ...
- HDU 5898 odd-even number (数位DP) -2016 ICPC沈阳赛区网络赛
题目链接 题意:一个数字,它每个数位上的奇数都形成偶数长度的段,偶数位都形成奇数长度的段他就是好的.问[L , R]的好数个数. 题解:裸的数位dp, 从高到低考虑每个数位, 状态里存下到当前位为止的 ...
- HDU 5884 Sort -2016 ICPC 青岛赛区网络赛
题目链接 #include <iostream> #include <math.h> #include <stdio.h> #include<algorith ...
- HDU 5875 Function -2016 ICPC 大连赛区网络赛
题目链接 网络赛的水实在太深,这场居然没出线zzz,差了一点点,看到这道题的的时候就剩半个小时了.上面是官方的题意题解,打完了才知道暴力就可以过,暴力我们当时是想出来了的,如果稍稍再优化一下估计就过了 ...
- HDU 5881 Tea -2016 ICPC 青岛赛区网络赛
题目链接 题意:有一壶水, 体积在 L和 R之间, 有两个杯子, 你要把水倒到两个杯子里面, 使得杯子水体积几乎相同(体积的差值小于等于1), 并且使得壶里剩下水体积不大于1. 你无法测量壶里剩下水的 ...
- HDU 5879 Cure -2016 ICPC 青岛赛区网络赛
题目链接 题意:给定一个数n,求1到n中的每一项的平方分之一的累加和. 题解:题目没有给数据范围,而实际上n很大很大超过long long.因为题目只要求输出五位小数,我们发现当数大到一定程度时值是固 ...
- HDU 5901 Count primes( Meisell-Lehmer算法模板 )
链接:传送门 题意:计算 [ 1 , n ] 之间素数的个数,(1 <= n <= 1e11) 思路:Meisell-Lehmer算法是计算超大范围内素数个数的一种算法,原理并不明白,由于 ...
- HDU 5901 Count primes (模板题)
题意:给求 1 - n 区间内的素数个数,n <= 1e11. 析:模板题. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024 ...
随机推荐
- ML—随机森林·1
Introduction to Random forest(Simplified) With increase in computational power, we can now choose al ...
- winServer2003除默认端口外的其他端口只能本地访问,关闭防火墙即可
winServer2003除默认端口外的其他端口只能本地访问,关闭防火墙即可
- 第11天 Stack Queue
1.Stack package algs4; import java.util.Iterator; import java.util.NoSuchElementException; public cl ...
- discuz个人空间主题列表 图片模式实现方法
discuz X3空间主题列表 图片展现模式,discuz实现个人空间主题列表调用图片模式,discuz home图片列表 如果需要实现该呈现方式,我们需要首先了解discuz封面图片存储原理:dis ...
- 比较两个数据库表table结构不同之处
/*--比较两个数据库的表字段差异 hy 适用多种版本库 --*/ /*--调用示例 exec p_comparestructure 'database1','database2' --*/ ) dr ...
- MySQL中快速复制数据表方法汇总
本文将着重介绍两个MySQL命令的组合,它将以原有数据表为基础,创建相同结构和数据的新数据表. 这可以帮助你在开发过程中快速的复制表格作为测试数据,而不必冒险直接操作正在运行 的数据表. 示例如下: ...
- [Asp.net MVC]Asp.net MVC5系列——添加模型
目录 概述 添加模型 总结 系列文章 [Asp.net MVC]Asp.net MVC5系列——第一个项目 [Asp.net MVC]Asp.net MVC5系列——添加视图 概述 在本节中我们将追加 ...
- UDS帧传输
说明 在UDS协议中,其中有一点我视作为基础,即帧传输.也即是数据传输这一块,在UDS的帧传输中,分为4种: SF单帧 FF第一帧 CF连续帧 FC流控制帧 首先,我们抛开以上的东西,假设一个销售商( ...
- php使用文件缓存
使用php读取mysql中的数据很简单,数据量不大的时候,mysql的性能还是不错的.但是有些查询可能比较耗时,这时可以把查询出的结果,缓存起来,减轻mysql的查询压力. 缓存的方法有几种:使用me ...
- zipimport.ZipImportError: can't decompress data; zlib not available 解决办法
第一步,下载python-pip的tar包 # wget https://pypi.python.org/packages/source/p/pip/pip-1.3.1.tar.gz --no-che ...