CSU 1325 莫比乌斯反演
题目大意:
一、有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数;
二、有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个倍数。
第一行两个数:p和q。(1<p<10^7 ,1<q<1000。)
接下来有q行,每行两个数A和B。(1<A,B<10^7)
我们先考虑第二个问题 ,很简单答案就是 (A/p) * (B/p) , 因为从p开始每次叠加p枚举到A,B中间得到的数都是可以任意选择,gcd()的值必然是p的倍数的
我们考虑第一个问题,这里约数的个数不超过数字n的2sqrt(n)个
所以我们可以枚举出每一个约数k,然后对k进行求和
对于使用莫比乌斯反演求和的话只是从当前来说复杂度大概是
O(q*lg(p)*(sqrt(A)+sqrt(B)) //sqrt(A)是因为对莫比乌斯数组求前缀和进行快速计算,这是莫比乌斯中常出现的方式
为了较低复杂度,我们列式计算考虑降维
如下列公式所示:
最后是如何计算sum[t],能计算出sum[]数组的话,t最大不超过min(A,B)那么总复杂度就能降为O(q*(sqrt(A)+sqrt(B))就没问题了
这里t只跟k,d有关系,那么只要枚举每一个k,d就能得到sum[t]的数组了
for(int i=0 ; i<cnt ; i++){
for(int d=1 ; d*fac[i]<=M ; d++){
sum[d*fac[i]] += mu[d];
}
}
for(int i=1 ; i<=M ; i++) sum[i] += sum[i-1];
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath> using namespace std;
#define ll long long
#define N 10005
#define M 10000000
int p,q,a,b,cnt;
int fac[N];
int mu[M+] , prime[M/] , tot , sum[M];
bool check[M+]; void get_mu()
{
mu[] = ;
for(int i= ; i<=M ; i++){
if(!check[i]){
mu[i] = -;
prime[tot++] = i;
}
for(int j= ; j<tot ; j++){
if((ll)prime[j]*i>M) break;
check[prime[j]*i] = true;
if(i%prime[j]==) break;
else mu[i*prime[j]] = -mu[i];
}
}
} void init()
{
int v = (int)sqrt(p+0.5);
for(int i= ; i<=v ; i++){
if(p%i==){
fac[cnt++] = i;
if(p/i!=i) fac[cnt++] = p/i;
}
}
} void pre_solve()
{
for(int i= ; i<cnt ; i++){
for(int d= ; d*fac[i]<=M ; d++){
sum[d*fac[i]] += mu[d];
}
}
for(int i= ; i<=M ; i++) sum[i] += sum[i-];
} ll cal(int a , int b)
{
ll ans = ;
for(int t= , last ; t<=a ; t=last+){
last = min(a/(a/t) , b/(b/t));
ans += (ll)(sum[last]-sum[t-])*(a/t)*(b/t);
}
return ans;
} int main()
{
get_mu();
scanf("%d%d" , &p , &q);
init();
pre_solve();
while(q--){
scanf("%d%d" , &a , &b);
if(a>b) swap(a , b);
printf("%lld %lld\n" , cal(a,b) , (ll)(a/p)*(b/p));
}
}
CSU 1325 莫比乌斯反演的更多相关文章
- CSU 1325: A very hard problem 中南月赛的一道题。
1325: A very hard problem Time Limit: 3 Sec Memory Limit: 160 MBSubmit: 203 Solved: 53[Submit][Sta ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 莫比乌斯函数筛法 & 莫比乌斯反演
模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
随机推荐
- Code First is a bad name,这些年我们对Code First的理解都错了 !很震惊吧?
当看到这个时,我也很震惊.估计绝大多数的人和我一样,这些年来,一直不知道Code Fisrt的真实意义.下面是一篇讲述此情况的译文,欢迎围观,若有翻译不当的地方,请指正,谢谢.如果被惊到了,请点赞!, ...
- HTML5 UI框架Kendo UI Web自定义组件(一)
Kendo UI Web包含数百个创建HTML5 web app的必备元素,包括UI组件.数据源.验证.一个MVVM框架.主题.模板等.在Kendo UI Web中如何创建自定义组件呢,在下面的文章中 ...
- opensuse-13.1体验
1 livecd安装 下载地址 http://software.opensuse.org/131/zh_CN 我下载的kde版本的livecd,不像ubuntu支持ultraiso的U盘安装,也不支 ...
- android通知栏总结
通知消息的发送 12-1:消息管理者 NotificationManager manager = (NotificationManager) getSystemService(NOTIFICATION ...
- ADB指令
对于ADB指令的应用,首先应该配置环境,将文件所在路径复制到高级系统设置里面的环境变量path,然后就可以在命令符上进行ADB的指示 例如adb kill-server是关掉活动 adb start- ...
- 如何使用VS2013对C++进行编程
https://msdn.microsoft.com/zh-cn/library/bb384842.aspx
- dojox.grid.DataGrid
创建表格 <table data-dojo-type="dojox.grid.DataGrid" data-dojo-id="grid" style=&q ...
- WPF里的报警闪烁效果
<esri:MarkerSymbol x:Key="FlashMarkerSymbol" OffsetX="41" OffsetY="41&qu ...
- Spring中处理Post方法中文乱码
在Web.xml中配置: <!-- 注册Spring提供的处理Post请求的乱码问题 --> <filter> <filter-name>CharacterEnco ...
- 矩阵的QR分解
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> # ...