水平扩展和垂直扩展:

Horizontal and vertical scaling

Methods of adding more resources for a particular application fall into two broad categories: horizontal and vertical scaling.[5]

  • To scale horizontally (or scale out/in) means to add more nodes to (or remove nodes from) a system, such as adding a new computer to a distributed software application. An example might involve scaling out from one Web server system to three. As computer prices have dropped and performance continues to increase, high-performance computing applications such as seismic analysis and biotechnology workloads have adopted low-cost "commodity" systems for tasks that once would have required supercomputers. System architects may configure hundreds of small computers in a cluster to obtain aggregate computing power that often exceeds that of computers based on a single traditional processor. The development of high-performance interconnects such as Gigabit Ethernet, InfiniBand and Myrinet further fueled this model. Such growth has led to demand for software that allows efficient management and maintenance of multiple nodes, as well as hardware such as shared data storage with much higher I/O performance. Size scalability is the maximum number of processors that a system can accommodate.[4]
  • To scale vertically (or scale up/down) means to add resources to (or remove resources from) a single node in a system, typically involving the addition of CPUs or memory to a single computer. Such vertical scaling of existing systems also enables them to use virtualization technology more effectively, as it provides more resources for the hosted set of operating system and application modules to share. Taking advantage of such resources can also be called "scaling up", such as expanding the number of Apache daemon processes currently running. Application scalability refers to the improved performance of running applications on a scaled-up version of the system.[4]

There are tradeoffs between the two models. Larger numbers of computers means increased management complexity, as well as a more complex programming model and issues such as throughput and latency between nodes; also, some applications do not lend themselves to a distributed computing model. In the past, the price difference between the two models has favored "scale up" computing for those applications that fit its paradigm, but recent advances in virtualization technology have blurred that advantage, since deploying a new virtual system over a hypervisor (where possible) is often less expensive than actually buying and installing a real one. Configuring an existing idle system has always been less expensive than buying, installing, and configuring a new one, regardless of the model.

Note, that NFV defines these terms differently: scaling out/in is the ability to scale by add/remove resource instances (e.g. virtual machine), whereas scaling up/down is the ability to scale by changing allocated resources (e.g. memory/CPU/storage capacity)[6]

可扩展性 Scalability的更多相关文章

  1. Performance Tuning

    本文译自Wikipedia的Performance tuning词条,原词条中的不少链接和扩展内容非常值得一读,翻译过程中暴露了个人工程学思想和英语水平的不足,翻译后的内容也失去很多准确性和丰富性,需 ...

  2. Storm介绍及与Spark Streaming对比

    Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学 ...

  3. JSP之WEB服务器:Apache与Tomcat的区别 ,几种常见的web/应用服务器

    注意:此为2009年的blog,注意时效性(针对常见服务器)     APACHE是一个web服务器环境程序 启用他可以作为web服务器使用 不过只支持静态网页 如(asp,php,cgi,jsp)等 ...

  4. Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spa ...

  5. WEB服务器、应用程序服务器、HTTP服务器区别

    很清晰的解释了WEB服务器.应用程序服务器.HTTP服务器区别 转载自 http://www.cnblogs.com/zhaoyl/archive/2012/10/10/2718575.html WE ...

  6. web服务器 应用 服务器

    WEB服务器.应用程序服务器.HTTP服务器有何区别?IIS.Apache.Tomcat.Weblogic.WebSphere都各属于哪种服务器,这些问题困惑了很久,今天终于梳理清楚了: Web服务器 ...

  7. 基于Flume的美团日志收集系统(一)架构和设计

    美团的日志收集系统负责美团的所有业务日志的收集,并分别给Hadoop平台提供离线数据和Storm平台提供实时数据流.美团的日志收集系统基于Flume设计和搭建而成. <基于Flume的美团日志收 ...

  8. web服务器和应用服务器

    通俗的讲,Web服务器传送(serves)页面使浏览器可以浏览,然而应用程序服务器提供的是客户端应用程序可以调用(call)的方法(methods).确切一点,你可以说:Web服务器专门处理HTTP请 ...

  9. web服务器和应用服务器概念比较

    转自:http://hi.baidu.com/lclkathy/blog/item/dae3be36763a47370b55a970.html 一 常见的WEB服务器和应用服务器 在UNIX和LINU ...

随机推荐

  1. 深入理解JVM—JVM内存模型

    我们知道,计算机CPU和内存的交互是最频繁的,内存是我们的高速缓存区,用户磁盘和CPU的交互,而CPU运转速度越来越快,磁盘远远跟不上CPU的读写速度,才设计了内存,用户缓冲用户IO等待导致CPU的等 ...

  2. centos 安装依赖错误

    出现下列错误: error: curl/curl.h: No such file or directory 出错原因:缺少libcurl-dev or libcurl-devel centOS上安装依 ...

  3. 解决mstsc无法连接问题:由于没有远程桌面授权服务器可以提供许可证

    一.故障案例① 今天上午在给测试组的IIS新增https的时候,发现远程弹出如下错误: 由于没有远程桌面授权服务器可以提供许可证,远程会话被中断.请跟服务器管理员联系. 度了度,原来也是很常见的一种错 ...

  4. Keil代码中for循环延时问题

  5. 系统进程 zygote(三)—— app_process 的 main 函数

    ilocker:关注 Android 安全(新入行,0基础) QQ: 2597294287 首先: , , , ) < ) { // Older kernels don't understand ...

  6. C++浅析——虚函数的动态和静态绑定

    源自一道面试题,觉得很有意思 class CBase { public: virtual void PrintData(int nData = 111); }; void CBase::PrintDa ...

  7. 突然发现这周有点忙。。着玩-PHP进阶

    hi 周二才,不过我突然意识到这周有点忙着玩的感觉,还是很期待的——今天下午去市里,晚上回来看电影,明晚聚餐吃火锅,后天下午拍短片,晚上可能要打球,周五,嗯,就到周五了.虽然这样下去连怎么写(bian ...

  8. Hadoop_MapReduce流程

    Hadoop学习笔记总结 01. MapReduce 1. Combiner(规约) Combiner号称本地的Reduce. 问:为什么使用Combiner? 答:Combiner发生在Map端,对 ...

  9. 【温故而知新-Javascript】使用拖放

    HTML5 添加了对拖放(drag and drop)的支持.我们之前只能依靠jQuery 这样的JavaScript库才能处理这种操作.把拖放内置到浏览器的好处是它可以正确的集成到操作系统中,而且正 ...

  10. 08章 分组查询、子查询、原生SQL

    一.分组查询 使用group by关键字对数据分组,使用having关键字对分组数据设定约束条件,从而完成对数据分组和统计 1.1 聚合函数:常被用来实现数据统计功能 ① count() 统计记录条数 ...