Description

Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes indexed from 1 to n. We will also consider the first node to be initially painted red, and the other nodes — to be painted blue.

The distance between two tree nodes v and u is the number of edges in the shortest path between v and u.

Xenia needs to learn how to quickly execute queries of two types:

  1. paint a specified blue node in red;
  2. calculate which red node is the closest to the given one and print the shortest distance to the closest red node.

Your task is to write a program which will execute the described queries.

Input

The first line contains two integers n and m (2 ≤ n ≤ 105, 1 ≤ m ≤ 105) — the number of nodes in the tree and the number of queries. Next n - 1 lines contain the tree edges, the i-th line contains a pair of integers ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi) — an edge of the tree.

Next m lines contain queries. Each query is specified as a pair of integers ti, vi (1 ≤ ti ≤ 2, 1 ≤ vi ≤ n). If ti = 1, then as a reply to the query we need to paint a blue node vi in red. If ti = 2, then we should reply to the query by printing the shortest distance from some red node to node vi.

It is guaranteed that the given graph is a tree and that all queries are correct.

Output

For each second type query print the reply in a single line.

Examples
Input
5 4
1 2
2 3
2 4
4 5
2 1
2 5
1 2
2 5
Output
0
3
2 正解:分块+RMQ求LCA
解题报告:
  上次考试的原题...

  正解可以写动态树分治,但同时YMDragon写的也是XYK给出的标解就是把操作分块。大概讲一下吧,就是每根号个修改都作为一个整体,丢到一个数组里面,每次询问是当前这个结点的最优解,并且把当前结点数组里面每个待更新的结点求一下距离更新一下答案。然后每当数组里面的元素多于根号个就全部取出来然后update一下整棵树,BFS一遍,相当于是多源最短路。这样可以保证复杂度。

  我发现我缺乏对根号算法的思考,平时会做会想,但是真正考试的时候很少往分块或者莫队上想,这是我需要提高和锻炼的。


 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int inf = 1LL<<;
const int MAXM = ;
#define RG register
const int SIZE = ;
int n,m,ecnt,ans;
int first[MAXN],to[MAXM],next[MAXM];
int deep[MAXN],id[MAXN];
int dui[MAXN],head,tail,dis[MAXN],ans_dis[MAXN];
int D[MAXN*],belong[MAXN*];
int ST[MAXN*][],mi[];
int stack[SIZE+],top; inline int getint()
{
RG int w=,q=; RG char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline void dfs(int x,int fa){
D[++ecnt]=x; id[x]=ecnt;
for(int i=first[x];i;i=next[i]) {
RG int v=to[i]; if(v==fa) continue;
deep[v]=deep[x]+; dfs(v,x);
D[++ecnt]=x;
}
} inline void build(){
belong[]=; for(int i=;i<=ecnt;i++) belong[i]=belong[i/]+;
mi[]=; for(int i=;i<=;i++) mi[i]=mi[i-]*;
for(int i=;i<=ecnt;i++) ST[i][]=D[i];
for(int j=;j<=;j++) for(int i=;i+mi[j-]-<=ecnt;i++) { if(deep[ST[i+mi[j-]][j-]]>deep[ST[i][j-]]) ST[i][j]=ST[i][j-]; else ST[i][j]=ST[i+mi[j-]][j-]; }
} inline int lca(int x,int y){
int f1=id[x],f2=id[y]; if(f1>f2) swap(f1,f2);
int ll=f2-f1+,lr=belong[ll];
if(deep[ST[f1][lr]]>deep[ST[f2-(<<lr)+][lr]]) return ST[f2-(<<lr)][lr];
else return ST[f1][lr];
} inline void work(){
n=getint(); m=getint(); RG int x,y;
for(RG int i=;i<=n;i++) {
x=getint(); y=getint();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x;
}
ecnt=; dfs(,); build();
for(RG int i=;i<=n;i++) ans_dis[i]=deep[i];
RG int ljh,u;
while(m--) {
ljh=getint();
if(ljh==) {
x=getint(); for(RG int i=;i<=top;i++) ans_dis[x]=min(ans_dis[x],deep[x]+deep[stack[i]]-deep[lca(x,stack[i])]*);
printf("%d\n",ans_dis[x]);
}
else {
x=getint(); if(x==) continue; stack[++top]=x;
if(top>=SIZE) {
head=; tail=; for(RG int i=;i<=n;i++) dis[i]=inf;
for(RG int i=;i<=top;i++) dui[++tail]=stack[i],dis[stack[i]]=;
top=;
while(head<tail) {
head++; u=dui[head]; ans_dis[u]=min(ans_dis[u],dis[u]);
for(RG int i=first[u];i;i=next[i]) {
RG int v=to[i];
if(dis[v]==inf) {
dis[v]=dis[u]+; dui[++tail]=v;
}
}
}
}
}
}
} int main()
{
work();
return ;
}

codeforces 342E :Xenia and Tree的更多相关文章

  1. Codeforces 339B:Xenia and Ringroad(水题)

    time limit per test : 2 seconds memory limit per test : 256 megabytes input : standard input output ...

  2. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)

    codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...

  3. codeforces 812E Sagheer and Apple Tree(思维、nim博弈)

    codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...

  4. Codeforces E. Alyona and a tree(二分树上差分)

    题目描述: Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  5. [codeforces 339]D. Xenia and Bit Operations

    [codeforces 339]D. Xenia and Bit Operations 试题描述 Xenia the beginner programmer has a sequence a, con ...

  6. [codeforces 339]C. Xenia and Weights

    [codeforces 339]C. Xenia and Weights 试题描述 Xenia has a set of weights and pan scales. Each weight has ...

  7. Ext.Net学习笔记22:Ext.Net Tree 用法详解

    Ext.Net学习笔记22:Ext.Net Tree 用法详解 上面的图片是一个简单的树,使用Ext.Net来创建这样的树结构非常简单,代码如下: <ext:TreePanel runat=&q ...

  8. codeforces 220 C. Game on Tree

    题目链接 codeforces 220 C. Game on Tree 题解 对于 1节点一定要选的 发现对于每个节点,被覆盖切选中其节点的概率为祖先个数分之一,也就是深度分之一 代码 #includ ...

  9. Linux 指令篇:磁盘管理--tree

    Linux 指令篇:磁盘管理--tree 功能说明:以树状图列出目录的内容. 语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式&g ...

随机推荐

  1. fMRI数据分析处理原理及方法

    来源: 整理文件的时候翻到的,来源已经找不到了囧感觉写得还是不错,贴在这里保存. 近年来,血氧水平依赖性磁共振脑功能成像(Blood oxygenation level-dependent funct ...

  2. usb驱动开发14之设备生命线

    直接看代码吧. /*-------------------------------------------------------------------*/ /** * usb_submit_urb ...

  3. servlet 中文乱码问题

    两步骤搞定: 1,修改tomcat的server.xml <Connector port="8080" protocol="HTTP/1.1" conne ...

  4. K8 系统中省市县数据表的设计可以反映出什么? 通过一个基础业务表的设计品味软件系统的整体架构

    1:没有严谨的Id思想,不变化的Id思想,看不见的Id的思想. 2:数据不严谨,没有上下级关系,没有树形结构,ParentId 的思想. 3:表之间的关系都是弱关联,基础数据一修改业务数据就容易乱套. ...

  5. Android -- ViewDragHelper

    ViewDragHelper SlidingPaneLayout和DrawerLayout,现在这俩个类被广泛的运用,其实研究他们的源码你会发现这两个类都运用了ViewDragHelper来处理拖动. ...

  6. 谈谈patch strategy

    所谓的patch strategy,就是软件发布后出现bug时打补丁的方式 - 主要是关于源代码branch如何组织的方式 针对项目的开发阶段.开发状态.维护方式不同,可以有不同的patching s ...

  7. 详解c++指针的指针和指针的引用

    展示一下使用指针的指针和指针的引用修改传递给方法的指针,以便更好的使用它.(这里说的指针的指针不是一个二维数组) 为什么需要使用它们 当我们把一个指针做为参数传一个方法时,其实是把指针的复本传递给了方 ...

  8. [jQuery EasyUI系列] 创建增删改查应用

    一.数据收集并妥善管理数据是网络应用共同的必要.CRUD允许我们生产页面列表并编辑数据库记录. 本文主要演示如何使用jQuery EasyUI实现CRUD DataGrid. 将使用到的插件有: da ...

  9. 50-ln 简明笔记

    为文件建立链接 ln [options] existing-file [new-link] ln [options] existing-file-list directory ln可以为一个或多个文件 ...

  10. difference between append and appendTo

    if you need append some string to element and need set some attribute on these string at the same ti ...