写下这道题的原因很简单= =,因为这一题的状态转移方程不好找,另一方面,我看到很多针对这一题写的解题报告都把累加状态说得模棱两可,甚至直接说成了一个单一状态,弄得本是菜鸟的我硬生生折磨了一上午画了几个10*10的表才想出来(各种表思路还不一样= =||)


  题意:对整数N(N<250)进行划分,划分成单峰回文序列,题目给出K组N,然后求出相应总序列数目。

  例如:

  1: (1)

  2: (2), (1 1)

  3: (3), (1 1 1)

  4: (4), (1 2 1), (2 2), (1 1 1 1)

  5: (5), (1 3 1), (1 1 1 1 1)

  6: (6), (1 4 1), (2 2 2), (1 1 2 1 1), (3 3), (1 2 2 1), ( 1 1 1 1 1 1)

  7: (7), (1 5 1), (2 3 2), (1 1 3 1 1), (1 1 1 1 1 1 1)

  8: (8), (1 6 1), (2 4 2), (1 1 4 1 1), (1 2 2 2 1), (1 1 1 2 1 1 1), ( 4 4),

       (1 3 3 1), (2 2 2 2), (1 1 2 2 1 1), (1 1 1 1 1 1 1 1);

  解题思路:

    由于给出整数最大可到100+,我们可以想象一下100的整数划分之后的情况数绝对是一个很大的数字了。如果一 一枚举并进行判断无疑会TLE。

    但我们可以得出一种递推关系,例如 2.3.4.5.4.3.2 这种由23划分出的序列只要左右加上1就变成了 1.2.3.4.5.4.3.2.1 ,换成2就成为 2.2.3.4.5.4.3.2.2也就是说  27和25划分的部分序列可以根据23划分的部分序列来递推得到。

    既然有递推关系且我们可以知道上述单个状态是无后效性的,那么我们就可以用动态规划来完成这一递推

    我们简单假设A划分出的序列a1,a2,a3,a2,a1 可推出 由B划分的序列a0,a1,a2,a3,a2,a1,a0

    ps: 其中A = B - 2*a0

     那么我们递推的两个序列只需要满足a0<=a1即可

    我们用DP[A][a1]将A划分出的序列两端数字>=a1的总序列数作为一种状态,这样我们可以得到DP[B][a0]的全部序列

                        A中两端数大于i的总序列数

                             |

    因此我们可以找到一个状态转移方程:dp[n][i] = dp[n-i*2][i] + dp[n][i+1];

                       |             |

                  B中两端数>=i的总序列       B中两端数 >= i+1 的总序列数

        因此最终Code为:

      

 //UNIMODAL PALINDROMIC DECOMPOSITIONS
//整数划分 -> 单峰回文序列
//二维DP-状态转移方程挺难想的,要以整数划分后得到的单峰回文序列两端数字>=i为一个状态
//Memory:664K Time:0 Ms
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 251
long long dp[MAX][MAX]; //dp[n][i]代表整数为n进行划分时,两端处数字>=i的总情况数
void DP()
{
for (int i = ; i < MAX; i++)
dp[i][i] = ;
for (int i = ; i < MAX; i++)
for (int j = i - ; j >= ; j--)
{
dp[i][j] = dp[i][j + ];
if (i - j * == ) //刚好划分完
dp[i][j]++;
else if (i - j * >= j) //可以继续划分
dp[i][j] += dp[i - j * ][j]; //将i-j*2划分后且两端>=j的状态总数 转移给 i划分后两端为j的状态
}
}
int main()
{
DP();
int n;
while (scanf("%d", &n), n)
printf("%d %lld\n", n, dp[n][]);
return ;
}

小墨原创

                              

ACM/ICPC 之 DP-整数划分问题初探 (POJ1221)的更多相关文章

  1. 区间dp 整数划分问题

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  2. ACM/ICPC 之 DP解有规律的最短路问题(POJ3377)

    //POJ3377 //DP解法-解有规律的最短路问题 //Time:1157Ms Memory:12440K #include<iostream> #include<cstring ...

  3. ACM/ICPC 之 DP进阶(51Nod-1371(填数字))

    原题链接:填数字 顺便推荐一下,偶然看到这个OJ,发现社区运营做得很赞,而且交互和编译环境都很赞(可以编译包括Python,Ruby,Js在内的脚本语言,也可以编译新标准的C/C++11,甚至包括Go ...

  4. 2016 ACM/ICPC Asia Regional Shenyang Online 1009/HDU 5900 区间dp

    QSC and Master Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  5. 2016 ACM/ICPC Asia Regional Shenyang Online 1007/HDU 5898 数位dp

    odd-even number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. HDU 5000 2014 ACM/ICPC Asia Regional Anshan Online DP

    Clone Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) Total Submiss ...

  7. hdu1028(整数划分问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 整数划分问题 整数划分 --- 一个老生长谈的问题: 描述 整数划分是一个经典的问题.请写一个程 ...

  8. ACM ICPC Kharagpur Regional 2017

    ACM ICPC Kharagpur Regional 2017 A - Science Fair 题目描述:给定一个有\(n\)个点,\(m\)条无向边的图,其中某两个点记为\(S, T\),另外标 ...

  9. 2017 ACM ICPC Asia Regional - Daejeon

    2017 ACM ICPC Asia Regional - Daejeon Problem A Broadcast Stations 题目描述:给出一棵树,每一个点有一个辐射距离\(p_i\)(待确定 ...

随机推荐

  1. Oracle 中count(1) 和count(*) 的区别

    count()与count(*)比较: 如果你的数据表没有主键,那么count()比count(*)快 如果有主键的话,那主键(联合主键)作为count的条件也比count(*)要快 如果你的表只有一 ...

  2. 论Linux运维的一些基础安全知识和简单办法

    不知不觉本人来北京也已经第三个年头了,从一个Linux小小鸟,开始,2012年我参加了第一份工作,其实现在想想其实我是幸运的,本来求学的时候,就没好好的学Linux,我认为有Cisco知识从上wind ...

  3. ASP CDONTS.NEWMAIL组件发送电邮(附下载)

    附CDONT.NEWMAIL组件下载地址:http://files.cnblogs.com/files/colinliu/cdonts.rar ASP常规发送方法: <% dim mail se ...

  4. QS2016年全球高等教育系统实力排名 中国排名世界第八亚洲第一

    2016年5月18日,QS发布"2016年全球高等教育系统实力排名",中国在此榜单表现优异,排名世界第八亚洲第一. 排名指标 排名指标及计算方法如下: 系统实力:QS大学排名前70 ...

  5. 用数组求Fibonacci数列

    #include<stdio.h>int main(){      int a[20]={1,1};      int n=2,i;      for(n=2;n<20;n++)  ...

  6. 被拒原因——You have selected the Kids Category for your app, but it does not include the required privacy policy. Please update your app metadata to include a privacy policy URL and ensure that the URL yo

    对于一些孩子类的应用,必须加上隐私政策网址(URL),直接截个图吧! 就是你上架的时候,填写应用信息,里面有一个隐私政策网址(URL),望后者不掉坑里了!!!

  7. 【C语言入门教程】1.1 基本程序结构

    基本程序结构就是从上至下顺序执行的程序,C语言程序必须有且只有一个主函数,程序从主函数开始执行,直到主函数结束.下例是根据半径求圆形面积的程序源代码. #include <stdio.h> ...

  8. Redis学习笔记一:数据结构与对象

    1. String(SDS) Redis使用自定义的一种字符串结构SDS来作为字符串的表示. 127.0.0.1:6379> set name liushijie OK 在如上操作中,name( ...

  9. java使用split分隔,需要注意的点

    String severName = "10.6.62.244"; System.out.println(severName.split(".").length ...

  10. BZOJ1251——序列终结者

    给你一个数列,让你实现区间加上一个值,区间翻转,区间最大值 裸splay,懒标记一发即可 #include <cstdio> #include <cstdlib> #inclu ...