原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/

题目:

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.

Example 1:

     0          3
| |
1 --- 2 4

Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.

Example 2:

     0           4
| |
1 --- 2 --- 3

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.

Note:
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

题解:

使用一维UnionFind.

Time Complexity: O(elogn). e是edges数目. Find, O(logn). Union, O(1).

Space: O(n).

AC Java:

 class Solution {
public int countComponents(int n, int[][] edges) {
if(n <= 0){
return 0;
} UnionFind uf = new UnionFind(n);
for(int [] edge : edges){
if(!uf.find(edge[0], edge[1])){
uf.union(edge[0], edge[1]);
}
} return uf.size();
}
} class UnionFind{
private int count;
private int [] parent;
private int [] size; public UnionFind(int n){
this.count = n;
parent = new int[n];
size = new int[n];
for(int i = 0; i<n; i++){
parent[i] = i;
size[i] = 1;
}
} public boolean find(int i, int j){
return root(i) == root(j);
} private int root(int i){
while(i != parent[i]){
parent[i] = parent[parent[i]];
i = parent[i];
} return parent[i];
} public void union(int i, int j){
int rootI = root(i);
int rootJ = root(j);
if(size[rootI] > size[rootJ]){
parent[rootJ] = rootI;
size[rootI] += size[j];
}else{
parent[rootI] = rootJ;
size[rootJ] += size[rootI];
} this.count--;
} public int size(){
return this.count;
}
}

也可以使用BFS, DFS.

Time Complexity: O(n+e), 建graph用O(n+e), BFS, DFS 用 O(n+e). Space: O(n + e).

 public class Solution {
public int countComponents(int n, int[][] edges) {
List<List<Integer>> graph = new ArrayList<List<Integer>>();
for(int i = 0; i<n; i++){
graph.add(new ArrayList<Integer>());
} for(int [] edge : edges){
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
} HashSet<Integer> visited = new HashSet<Integer>();
int count = 0;
for(int i = 0; i<n; i++){
if(!visited.contains(i)){
// bfs(graph, i, visited);
dfs(graph, i, visited);
count++;
}
}
return count;
} public void bfs(List<List<Integer>> graph, int i, HashSet<Integer> visited){
LinkedList<Integer> que = new LinkedList<Integer>();
visited.add(i);
que.add(i);
while(!que.isEmpty()){
int cur = que.poll();
List<Integer> neighbours = graph.get(cur);
for(int neighbour : neighbours){
if(!visited.contains(neighbour)){
que.add(neighbour);
visited.add(neighbour);
}
}
}
} public void dfs(List<List<Integer>> graph, int i, HashSet<Integer> visited){
visited.add(i);
for(int neighbour : graph.get(i)){
if(!visited.contains(neighbour)){
dfs(graph, neighbour, visited);
}
}
}
}

跟上Find the Weak Connected Component in the Directed GraphNumber of Islands II.

LeetCode Number of Connected Components in an Undirected Graph的更多相关文章

  1. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  2. LeetCode 323. Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  3. [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. 323. Number of Connected Components in an Undirected Graph (leetcode)

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  5. Number of Connected Components in an Undirected Graph -- LeetCode

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  6. 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...

  7. [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  8. [Locked] Number of Connected Components in an Undirected Graph

    Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...

  9. 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集

    [抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...

随机推荐

  1. c++ 关于new文件

    new文件用来管理c++的动态内存,这个文件声明了几个全局空间的函数(不是std空间的函数,全局空间的函数调用时是用全局作用域解析符),包括operator new 和operator delete的 ...

  2. 【poj2828】Buy Tickets

    Description Railway tickets were difficult to buy around the Lunar New Year in China, so we must get ...

  3. implicit和explicit的基本使用

    class MyAge { public int Age { get; set; } public static implicit operator MyAge(int age) { return n ...

  4. 主席树+启发式合并(LT) BZOJ3123

    好久没做题了,写道SBT又RE又T 查询:主席树裸题. 修改:对于两个树合并重建小的树. 注意fa[x][i]重新计算时要清空 #include<cstdio> #include<c ...

  5. IIS7.0+部署ARR负载均衡

    安装: 1.  安装IIS(需要附带相关的健康检查,需要原始的那个默认站点) 2.  安装ARR相关的文件 3.  安装好之后,IIS里会出现有Server Farms的节点,直接创建服务器. 站点对 ...

  6. Number Sequence

    Number Sequence   A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) ...

  7. 延迟加载图片插件LazyLoad.js的使用方法

    我们常常会见到很多网页的图片并不是一打开页面就全部加载的,而是浏览到当前的图片位置才显示出来.这是怎么实现出来的呢? 其实这就是目前较为流行的“延迟加载”(Lazy Load)技术,灵感来自Matt ...

  8. 李洪强iOS经典面试题132-版本控制

    面试过程中,可能会问及一些关于版本控制的问题,理解下SVN和Git的原理,记住常用命令即可. SVN SVN 是集中式源代码管理工具 概念: 1> Repository 代码仓库,保存代码的仓库 ...

  9. 用atom写LaTeX文档

    下载并安装Tex Live: 下载页面 下载并安装atom:下载页面 打开atom File -> Settings -> Install 搜索并安装: language-latex la ...

  10. Hirbernate第三次试题分析

    解析:HQL语句可以执行T-SQL语句,但执行步骤较复杂,需引入jar包等各种配置. 解析:final修饰的成员变量必须由程序员显式地指定初始值.    static一般用于修饰全局变量 解析:Hib ...