LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/
题目:
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3
| |
1 --- 2 4
Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], return 2.
Example 2:
0 4
| |
1 --- 2 --- 3
Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [3, 4]], return 1.
Note:
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
题解:
使用一维UnionFind.
Time Complexity: O(elogn). e是edges数目. Find, O(logn). Union, O(1).
Space: O(n).
AC Java:
class Solution {
public int countComponents(int n, int[][] edges) {
if(n <= 0){
return 0;
}
UnionFind uf = new UnionFind(n);
for(int [] edge : edges){
if(!uf.find(edge[0], edge[1])){
uf.union(edge[0], edge[1]);
}
}
return uf.size();
}
}
class UnionFind{
private int count;
private int [] parent;
private int [] size;
public UnionFind(int n){
this.count = n;
parent = new int[n];
size = new int[n];
for(int i = 0; i<n; i++){
parent[i] = i;
size[i] = 1;
}
}
public boolean find(int i, int j){
return root(i) == root(j);
}
private int root(int i){
while(i != parent[i]){
parent[i] = parent[parent[i]];
i = parent[i];
}
return parent[i];
}
public void union(int i, int j){
int rootI = root(i);
int rootJ = root(j);
if(size[rootI] > size[rootJ]){
parent[rootJ] = rootI;
size[rootI] += size[j];
}else{
parent[rootI] = rootJ;
size[rootJ] += size[rootI];
}
this.count--;
}
public int size(){
return this.count;
}
}
也可以使用BFS, DFS.
Time Complexity: O(n+e), 建graph用O(n+e), BFS, DFS 用 O(n+e). Space: O(n + e).
public class Solution {
public int countComponents(int n, int[][] edges) {
List<List<Integer>> graph = new ArrayList<List<Integer>>();
for(int i = 0; i<n; i++){
graph.add(new ArrayList<Integer>());
}
for(int [] edge : edges){
graph.get(edge[0]).add(edge[1]);
graph.get(edge[1]).add(edge[0]);
}
HashSet<Integer> visited = new HashSet<Integer>();
int count = 0;
for(int i = 0; i<n; i++){
if(!visited.contains(i)){
// bfs(graph, i, visited);
dfs(graph, i, visited);
count++;
}
}
return count;
}
public void bfs(List<List<Integer>> graph, int i, HashSet<Integer> visited){
LinkedList<Integer> que = new LinkedList<Integer>();
visited.add(i);
que.add(i);
while(!que.isEmpty()){
int cur = que.poll();
List<Integer> neighbours = graph.get(cur);
for(int neighbour : neighbours){
if(!visited.contains(neighbour)){
que.add(neighbour);
visited.add(neighbour);
}
}
}
}
public void dfs(List<List<Integer>> graph, int i, HashSet<Integer> visited){
visited.add(i);
for(int neighbour : graph.get(i)){
if(!visited.contains(neighbour)){
dfs(graph, neighbour, visited);
}
}
}
}
跟上Find the Weak Connected Component in the Directed Graph, Number of Islands II.
LeetCode Number of Connected Components in an Undirected Graph的更多相关文章
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode 323. Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- [LeetCode] 323. Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- 323. Number of Connected Components in an Undirected Graph (leetcode)
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- Number of Connected Components in an Undirected Graph -- LeetCode
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...
- [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [Locked] Number of Connected Components in an Undirected Graph
Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
随机推荐
- Android 蓝牙4.0 BLE
Android ble (Bluetooth Low Energy) 蓝牙4.0,也就是说API level >= 18,且支持蓝牙4.0的手机才可以使用. BLE是蓝牙4.0的核心Profil ...
- ACM: POJ 1401 Factorial-数论专题-水题
POJ 1401 Factorial Time Limit:1500MS Memory Limit:65536KB 64bit IO Format:%lld & %llu ...
- Crystal Reports 2008(水晶报表) 启动时检查更新
在安装好了Crystal Reports后,每次打开的是都会出现以下提示: 服务器正在运行中 由于另一个程序正在运行中,此操作无法完成.请选择“切换到”来激活正在运行中的程序,并更正问题. 碰到这样的 ...
- iOS 上线被拒收集
根据上线被拒的原因 自己 也在慢慢总结 希望对各位有所帮助 1)QQ 微信 等第三方平台 必须要做是否安装应用的检测
- CentOS 6.7安装Mysql 5.7
Step1: 检测系统是否自带安装mysql # yum list installed | grep mysql Step2: 删除系统自带的mysql及其依赖命令: # yum -y remove ...
- 配置hooks使svn提交后自动同步客户端代码(客户端与服务端在同一台机器上)
1.配置svn的hooks 2.实例演示 1.配置svn的hooks 1.1)配置情况 承接上篇svn搭建的文章,今次继续使用上篇文章的配置 上篇文章的地址:linux下搭建svn代码库 svn仓库所 ...
- JavaScript声明全局变量的三种方式
JavaScript声明全局变量的三种方式 JS中声明全局变量主要分为显式声明或者隐式声明下面分别介绍. 声明方式一: 使用var(关键字)+变量名(标识符)的方式在function外部声明,即为 ...
- Java I/O Basic
/* 记住每个类相应的用法*/流的分类: io包内定义了所有的流 分类: 方向:输入流.输出流 处理数据单位:字节流.字符流 功能不同:节点流.处理流 所有流类型,位于java.io包内,分别继承以下 ...
- java代码实现打包多个文件下载功能
//传入对应的需要打包的file 集合对象 //文件打包下载 public static HttpServletResponse downLoadFiles(List<File> ...
- HDU1166线段树(单点更新,区间求和)
敌兵布阵 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...