BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡
首先我们列出转移矩阵$M$,$M_{i, j} = \frac {1 - \frac{p} {q}} {deg[i]}$(i,j之间有边)or $M_{i, j} = 0$(i,j之间没边)
则这个矩阵$M_{i, j}$表示的是站在某个点$i$,下一次走到$j$且没有爆炸的概率
我们再看$M^n_{i, j}$,表示的站在某个点$i$,走$n$步以后到达$j$且没有爆炸的概率
故$M^n$的第一列代表了$1$号点到其他所有点的概率,设为列向量$A_n$,则$A_n = M^n * B$,其中$B = (1, 0, 0, 0, ...)^T$
设第n步到各点且爆炸了的概率的列向量为$P_n$,则$P_n = \frac{p} {q} * A_n$
故答案列向量$Ans = \sum_{i = 0} ^ {+\infty} P_i$
把它展开:$Ans = \frac{p} {q} * (\sum_{i = 0} ^ {+\infty} M^i) * B$
由等比数列求和公式,$\sum_{i = 0} ^ {+\infty} M^i = \frac{I} {I - M} = (I - M)^{-1}$
故$Ans = \frac{p} {q} * (I - M)^{-1} * B$,即$(I- M) * Ans = \frac{p} {q} * B$
得到一个线性方程组,我们只要高斯消元即可
/**************************************************************
Problem: 1778
User: rausen
Language: C++
Result: Accepted
Time:200 ms
Memory:2264 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <algorithm> using namespace std;
typedef double lf;
const int N = ;
const int M = N * N; inline int read(); struct edge {
int next, to;
edge() {}
edge(int _n, int _t) : next(_n), to(_t) {}
} e[M]; int n, m, deg[N];
int first[N], tot;
lf P, a[N][N], ans[N]; inline void Add_Edges(int x, int y) {
e[++tot] = edge(first[x], y), first[x] = tot;
e[++tot] = edge(first[y], x), first[y] = tot;
++deg[x], ++deg[y];
} #define y e[x].to
inline void build_matrix() {
int p, x;
for (p = ; p <= n; ++p) {
for (x = first[p]; x; x = e[x].next)
a[p][y] = -(1.0 - P) / deg[y];
a[p][p] = ;
}
a[][n + ] = P;
}
#undef y void gauss(int n) {
int i, j, k;
lf tmp;
for (i = ; i <= n; ++i) {
for (k = i, j = i + ; j <= n; ++j)
if (fabs(a[j][i]) > fabs(a[k][i])) k = j;
for (j = i; j <= n + ; ++j) swap(a[i][j], a[k][j]);
for (k = i + ; k <= n; ++k)
for (tmp = -a[k][i] / a[i][i], j = i; j <= n + ; ++j)
a[k][j] += a[i][j] * tmp;
}
for (i = n; i; --i) {
for (j = i + ; j <= n; ++j)
a[i][n + ] -= a[i][j] * ans[j];
ans[i] = a[i][n + ] / a[i][i];
}
} int main() {
int i, j;
n = read(), m = read(), P = 1.0 * read() / read();
for (i = ; i <= m; ++i)
Add_Edges(read(), read());
build_matrix();
gauss(n);
for (i = ; i <= n; ++i)
printf("%.9lf\n", ans[i]);
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}
BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡的更多相关文章
- bzoj1778: [Usaco2010 Hol]Dotp 驱逐猪猡(概率DP+高斯消元)
深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元
[BZOJ1778][Usaco2010 Hol]Dotp 驱逐猪猡 Description 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 563 Solved: 216[Submi ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡
题解: 网上有一种复杂的方法..好像复杂度并没有优势就没看 定义f[i]表示i的期望经过次数,f[i]=sigma{f[j]*p/q/du[j]}+(i==1); 然后高斯消元就可以了 最后求出来的f ...
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...
- 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡
[题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...
随机推荐
- Linux中的软硬链接
说到Linux中的软硬链接,就必须谈一下Linux的文件系统的组成的重要部分iNode和block. 首先是iNode,先用一张图了解一下iNode在Linux文件系统中的地位: Linux中的文件的 ...
- 使用JavaService.exe(amd64)发布java服务(jdk x64)
最近项目中需要使用java服务,但是java服务已经写好了,就等待部署到windows服务中,遇到了种种困难------在x64服务器中部署jdk x64编译的jar时,遇到了各种纠结. 本文找到了一 ...
- PHP---------去除数组里面值为空或者为空字符串的元素
array_filter(array('a'=>'','',null,'b'=>3),function($val){ if($val===''||$val===null){ ...
- Windows消息机制概述
消息是指什么? 消息系统对于一个win32程序来说十分重要,它是一个程序运行的动力源泉.一个消息,是系统定义的一个32位的值,他唯一的定义了一个事件,向 Windows发出一个通知,告诉应用程 ...
- viewpager实现酷炫侧滑demo
晚上叫外卖,打开饿了么,发现推了一个版本,更新以后,点开了个鸡腿,哇,交互炫炸了. 不过还是有槽点.我是无意中才发现可以左右滑动的.这...你不告诉我,我怎么知道左右可以滑. https://gith ...
- asp.net 分页-自己写分页控件
去年就发表过asp.net 分页-利用后台直接生成html分页 ,那种方法只是单纯的实现了分页,基本不能使用,那时就想写个自己的分页控件,无奈能力有限.最近有点时间了,就自己做出了这个分页控件.我承认 ...
- 谈谈对AOP的理解
Aspect Oriented Programming 面向切面编程.解耦是程序员编码开发过程中一直追求的.AOP也是为了解耦所诞生. 具体思想是:定义一个切面,在切面的纵向定义处理方法,处理完成之 ...
- LeetCode----8. String to Integer (atoi)(Java)
package myAtoi8; /* * Implement atoi to convert a string to an integer. Hint: Carefully consider all ...
- html与jsp
1. 什么是 HTML 语言? HTML文件有什么特征? 答:HTML是超文本标记语言(Hypertext Mark-up Language)的缩写,主要用来创建与系统平台无关的网页文档.它是目前网络 ...
- python pip install
wget --no-check-certificate https://github.com/pypa/pip/archive/1.5.5.tar.gz https://github.com/pypa ...