BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡
首先我们列出转移矩阵$M$,$M_{i, j} = \frac {1 - \frac{p} {q}} {deg[i]}$(i,j之间有边)or $M_{i, j} = 0$(i,j之间没边)
则这个矩阵$M_{i, j}$表示的是站在某个点$i$,下一次走到$j$且没有爆炸的概率
我们再看$M^n_{i, j}$,表示的站在某个点$i$,走$n$步以后到达$j$且没有爆炸的概率
故$M^n$的第一列代表了$1$号点到其他所有点的概率,设为列向量$A_n$,则$A_n = M^n * B$,其中$B = (1, 0, 0, 0, ...)^T$
设第n步到各点且爆炸了的概率的列向量为$P_n$,则$P_n = \frac{p} {q} * A_n$
故答案列向量$Ans = \sum_{i = 0} ^ {+\infty} P_i$
把它展开:$Ans = \frac{p} {q} * (\sum_{i = 0} ^ {+\infty} M^i) * B$
由等比数列求和公式,$\sum_{i = 0} ^ {+\infty} M^i = \frac{I} {I - M} = (I - M)^{-1}$
故$Ans = \frac{p} {q} * (I - M)^{-1} * B$,即$(I- M) * Ans = \frac{p} {q} * B$
得到一个线性方程组,我们只要高斯消元即可
/**************************************************************
Problem: 1778
User: rausen
Language: C++
Result: Accepted
Time:200 ms
Memory:2264 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <algorithm> using namespace std;
typedef double lf;
const int N = ;
const int M = N * N; inline int read(); struct edge {
int next, to;
edge() {}
edge(int _n, int _t) : next(_n), to(_t) {}
} e[M]; int n, m, deg[N];
int first[N], tot;
lf P, a[N][N], ans[N]; inline void Add_Edges(int x, int y) {
e[++tot] = edge(first[x], y), first[x] = tot;
e[++tot] = edge(first[y], x), first[y] = tot;
++deg[x], ++deg[y];
} #define y e[x].to
inline void build_matrix() {
int p, x;
for (p = ; p <= n; ++p) {
for (x = first[p]; x; x = e[x].next)
a[p][y] = -(1.0 - P) / deg[y];
a[p][p] = ;
}
a[][n + ] = P;
}
#undef y void gauss(int n) {
int i, j, k;
lf tmp;
for (i = ; i <= n; ++i) {
for (k = i, j = i + ; j <= n; ++j)
if (fabs(a[j][i]) > fabs(a[k][i])) k = j;
for (j = i; j <= n + ; ++j) swap(a[i][j], a[k][j]);
for (k = i + ; k <= n; ++k)
for (tmp = -a[k][i] / a[i][i], j = i; j <= n + ; ++j)
a[k][j] += a[i][j] * tmp;
}
for (i = n; i; --i) {
for (j = i + ; j <= n; ++j)
a[i][n + ] -= a[i][j] * ans[j];
ans[i] = a[i][n + ] / a[i][i];
}
} int main() {
int i, j;
n = read(), m = read(), P = 1.0 * read() / read();
for (i = ; i <= m; ++i)
Add_Edges(read(), read());
build_matrix();
gauss(n);
for (i = ; i <= n; ++i)
printf("%.9lf\n", ans[i]);
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}
BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡的更多相关文章
- bzoj1778: [Usaco2010 Hol]Dotp 驱逐猪猡(概率DP+高斯消元)
深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元
[BZOJ1778][Usaco2010 Hol]Dotp 驱逐猪猡 Description 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 563 Solved: 216[Submi ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡
题解: 网上有一种复杂的方法..好像复杂度并没有优势就没看 定义f[i]表示i的期望经过次数,f[i]=sigma{f[j]*p/q/du[j]}+(i==1); 然后高斯消元就可以了 最后求出来的f ...
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...
- 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡
[题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...
随机推荐
- php组成数组
每次向数据库取5条数据,不足5条就不显示 $z = (int)(count($data) / 5);for ($ii = 1; $ii <= $z; $ii++) { foreach ($dat ...
- HttpClient_002_中文乱码、HttpClient中文乱码透析、总结
中文乱码原理代码: String s = "中文"; byte[] bs2 = s.getBytes("utf-8");//将s拆成:utf-8个体,注:utf ...
- html5,实例开发代码
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- 用xib自定义UITableViewCell
1.文件结构: 2. 先创建一个xib文件,删除原有的view,添加一个TableViewCell控件. 3.ModelTableViewController.m文件 #import "Mo ...
- apache+php+mysql的配置(转载)
windows: 按http://jingyan.baidu.com/article/fcb5aff797ec41edaa4a71c4.html的安装 按http://www.jb51.net/art ...
- javascript,jQuery,trim()
JavaScript trim() Syntax string.trim() The trim() method removes whitespace from both sides of a str ...
- LINK : fatal error LNK1104: 无法打开文件“LIBCD.lib”
出现这类问题一般是由于所运行的项目是VC6(或者vs2003)创建的,而后又用VS2005或者更高版本工具打开项目导致的,原因都是因为LIBCD.lib文件被更改了.要解决问题的话,只要在链接设置那里 ...
- 解读HTML 5新语法 提高语义价值
HTML 5的新标记 设计者们需要完成的任务是要给HTML 5开发一个更丰富的和更有含义的语义,当然可以想象这种新方案将会是很灵活和很高效的,同时与所有的现代互联网标准相适应.下面就是一些将要在HTM ...
- js页面刷新之实现定时刷新(定时器,meta)
测试页面的代码见上一篇博客 接下来进入正题-定时不断刷新页面的方法: 1.看到定时,很容易想到js的定时器: //第一种方法 //由于我们已经有了一个定时器,所以只要在定时器test中加入一句刷新页面 ...
- 关于NSLog
#ifdef __OBJC__#ifdef DEBUG#define NSLog(fmt,...) NSlog((@"%s [Line %d]" fmt),__PRETTY_FUN ...