codeforces 451E Devu and Flowers
题意:有n个瓶子每个瓶子有 f【i】 支相同的颜色的花(不同瓶子颜色不同,相同瓶子花视为相同) 问要取出s支花有多少种不同方案。
思路: 如果每个瓶子的花有无穷多。那么这个问题可以转化为 s支花分到n个瓶子有多少种方案 用隔板法就能解决 C(s+n-1,n-1) 。有限制之后我们可以 用 没限制的去减掉那些违反限制的 如果只有一个瓶子取得花超出上限 那么减去,两个瓶子 要加上(容斥原理) n只有20 就能暴力枚举那些取超过上限f【i】的瓶子并且在这些瓶子至少选出 f【i】+1 支花 统计即可。
#include <iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define MOD 1000000007
#define LL long long
using namespace std;
LL qmod(LL a,LL b)
{
LL res=;
if(a>=MOD)a%=MOD;
while(b)
{
if(b&)res=res*a%MOD;
a=a*a%MOD;
b>>=;
}
return res;
}
LL inv(LL a)
{
return qmod(a,MOD-);
}
LL invmod[];
LL C(LL n,LL m)
{
if(n<m)return ;
LL ans=;
for(int i=;i<=m;++i)
ans=(n-i+)%MOD*ans%MOD*invmod[i]%MOD;
return ans;
}
LL f[],n,s;
LL ans;
void gao(int now,LL sum,int flag)
{
if(sum>s)return ;
if(now==n)
{
ans+=flag*C(s-sum+n-,n-);
ans%=MOD;
// printf("%I64d\n",ans);
return ;
}
gao(now+,sum,flag);
gao(now+,sum+f[now]+,-flag);
}
int main() {
for(int i=;i<=;++i)
invmod[i]=qmod(i,MOD-);
cin>>n>>s;
for(int i=;i<n;++i)
cin>>f[i];
ans=;
gao(,,);
cout<<(ans%MOD+MOD)%MOD<<endl;
return ;
}
codeforces 451E Devu and Flowers的更多相关文章
- Codeforces 451E Devu and Flowers(容斥原理)
题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...
- Codeforces 451E Devu and Flowers(组合计数)
题目地址 在WFU(不是大学简称)第二次比赛中做到了这道题.高中阶段参加过数竞的同学手算这样的题简直不能更轻松,只是套一个容斥原理公式就可以.而其实这个过程放到编程语言中来实现也没有那么的复杂,不过为 ...
- codeforces 451E. Devu and Flowers 容斥原理+lucas
题目链接 给n个盒子, 每个盒子里面有f[i]个小球, 然后一共可以取sum个小球.问有多少种取法, 同一个盒子里的小球相同, 不同盒子的不同. 首先我们知道, n个盒子放sum个小球的方式一共有C( ...
- CodeForces - 451E Devu and Flowers (容斥+卢卡斯)
题意:有N个盒子,每个盒子里有fi 朵花,求从这N个盒子中取s朵花的方案数.两种方法不同当且仅当两种方案里至少有一个盒子取出的花的数目不同. 分析:对 有k个盒子取出的数目超过了其中的花朵数,那么此时 ...
- Codeforces 451E Devu and Flowers【容斥原理+卢卡斯定理】
题意:每个箱子里有\( f[i] \)种颜色相同的花,现在要取出\( s \)朵花,问一共有多少种颜色组合 首先枚举\( 2^n \)种不满足条件的情况,对于一个不被满足的盒子,我们至少拿出\( f[ ...
- CF 451E Devu and Flowers
可重集的排列数 + 容斥原理 对于 \(\{A_1 * C_1, A _2 * C_2, \cdots, A_n * C_n\}\)这样的集合来说, 设 \(N = \sum_{i = 1} ^ n ...
- Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥
E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- Codeforces 439C Devu and Partitioning of the Array(模拟)
题目链接:Codeforces 439C Devu and Partitioning of the Array 题目大意:给出n个数,要分成k份,每份有若干个数,可是仅仅须要关注该份的和为奇数还是偶数 ...
随机推荐
- biztalk重新发布
前提:在vs2013中,项目属性:重新部署设置为true,重新启动主机实例:设置为true,或者在最后重新部署完以后手动重启主机实例 下面是具体的步骤: 1. 项目修改完重新生成.. 2. 转到biz ...
- 几个精彩的DMV
--统计表的增删改次数,反映表的使用程度 SELECT DB_NAME([database_id]) AS [Database] ,iops.[object_id] AS [ObjectID] ,QU ...
- 获取dll中根目录
AppDomain.CurrentDomain.BaseDirectory获取当前应用程序域的基目录 好像是万能的:form:可执行文件路径控制台:输出路径web:根目录
- 【转】PowerShell入门(四):如何高效地使用交互式运行环境?
转至:http://www.cnblogs.com/ceachy/archive/2013/02/05/PowerShell_Interacting_Environment.html 在开始关于脚本. ...
- 二叉查找树的Java实现
为了克服对树结构编程的恐惧感,决心自己实现一遍二叉查找树,以便掌握关于树结构编程的一些技巧和方法.以下是基本思路: [1] 关于容器与封装.封装,是一种非常重要的系统设计思想:无论是面向过程的函数,还 ...
- Intellij IDEA 快捷键介绍
ctrl-w 使所选表达式逐步增大直到选取整个文件 ctrl+shft+w 逐步减少选中 ctrl-n 可以通过键入类名查找一个类 ctrl-shift-n 可以查找文件 ctrl-e 得到 ...
- SQL语句中&、单引号等特殊符号的处理
今天遇到一个insert语句,在SQL Tools(链接Oracle数据库)插入的某列值为“Computer Hardware & Software>>CPU",这样执行 ...
- javascript事件代理(Event Delegation)
看了几篇文章,放上来供参考 司徒正美的文章,Event Delegation Made Easy --------------------------------------------------- ...
- 使用WordPress模板搭建博客系统
综述: 前端展示:外观--->主题. 功能模块:插件. 遇到的问题: 1:无法加载编辑器文件: 切换下不同的wordPress模板,可能缓存文件有问题. 2:注册功能:密码重设链接无效bug-- ...
- maven-surefire-plugin的乱码问题
今天项目中出现奇怪问题,在eclipse中直接运行TestNG时,全部都OK,但是执行mvn test时却失败.观察其输出日志,发现有乱码,怀疑是乱码导致. 最终在官网发现蛛丝马迹. maven-su ...