MapReduce应用案例--简单排序
1. 设计思路
在MapReduce过程中自带有排序,可以使用这个默认的排序达到我们的目的。 MapReduce 是按照key值进行排序的,我们在Map过程中将读入的数据转化成IntWritable类型,然后作为Map的key值输出。 Reduce 阶段拿到的就是按照key值排序好的<key,value list>,将key值输出,并根据value list 中元素的个数决定key的输出次数。
2. 实现
2.1 程序代码
package sort; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SimpleSort {
public static class Map extends
Mapper<LongWritable, Text, IntWritable, IntWritable> {
private IntWritable data; protected void map(LongWritable key, Text value, Context context)
throws java.io.IOException, InterruptedException {
data = new IntWritable();
String line = value.toString();
data.set(Integer.parseInt(line));
context.write(data, new IntWritable(1));
};
} public static class Reduce extends
Reducer<IntWritable, IntWritable, IntWritable, IntWritable> { private static IntWritable num = new IntWritable(1);
protected void reduce(IntWritable key,
java.lang.Iterable<IntWritable> values, Context output)
throws java.io.IOException, InterruptedException {
for ( IntWritable val : values){
output.write(num, key);
num = new IntWritable(num.get() + 1);
}
};
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = new Job(conf,"simple sort"); job.setJarByClass(SimpleSort.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path("/user/hadoop_admin/sortin"));
FileOutputFormat.setOutputPath(job, new Path("/user/hadoop_admin/sortout")); System.exit((job.waitForCompletion(true) ? 0 : 1));
} }
2.2 测试结果
测试用例
file1
file2
运行信息
// :: WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
****hdfs://master:9000/user/hadoop_admin/sortin
// :: INFO input.FileInputFormat: Total input paths to process :
// :: WARN snappy.LoadSnappy: Snappy native library not loaded
// :: INFO mapred.JobClient: Running job: job_local_0001
// :: INFO mapred.Task: Using ResourceCalculatorPlugin : null
// :: INFO mapred.MapTask: io.sort.mb =
// :: INFO mapred.MapTask: data buffer = /
// :: INFO mapred.MapTask: record buffer = /
// :: INFO mapred.MapTask: Starting flush of map output
// :: INFO mapred.MapTask: Finished spill
// :: INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
// :: INFO mapred.JobClient: map % reduce %
// :: INFO mapred.LocalJobRunner:
// :: INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
// :: INFO mapred.Task: Using ResourceCalculatorPlugin : null
// :: INFO mapred.MapTask: io.sort.mb =
// :: INFO mapred.MapTask: data buffer = /
// :: INFO mapred.MapTask: record buffer = /
// :: INFO mapred.MapTask: Starting flush of map output
// :: INFO mapred.MapTask: Finished spill
// :: INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
// :: INFO mapred.JobClient: map % reduce %
// :: INFO mapred.LocalJobRunner:
// :: INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
// :: INFO mapred.Task: Using ResourceCalculatorPlugin : null
// :: INFO mapred.LocalJobRunner:
// :: INFO mapred.Merger: Merging sorted segments
// :: INFO mapred.Merger: Down to the last merge-pass, with segments left of total size: bytes
// :: INFO mapred.LocalJobRunner:
// :: INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
// :: INFO mapred.LocalJobRunner:
// :: INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
// :: INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to /user/hadoop_admin/sortout
// :: INFO mapred.LocalJobRunner: reduce > reduce
// :: INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
// :: INFO mapred.JobClient: map % reduce %
// :: INFO mapred.JobClient: Job complete: job_local_0001
// :: INFO mapred.JobClient: Counters:
// :: INFO mapred.JobClient: File Output Format Counters
// :: INFO mapred.JobClient: Bytes Written=
// :: INFO mapred.JobClient: FileSystemCounters
// :: INFO mapred.JobClient: FILE_BYTES_READ=
// :: INFO mapred.JobClient: HDFS_BYTES_READ=
// :: INFO mapred.JobClient: FILE_BYTES_WRITTEN=
// :: INFO mapred.JobClient: HDFS_BYTES_WRITTEN=
// :: INFO mapred.JobClient: File Input Format Counters
// :: INFO mapred.JobClient: Bytes Read=
// :: INFO mapred.JobClient: Map-Reduce Framework
// :: INFO mapred.JobClient: Reduce input groups=
// :: INFO mapred.JobClient: Map output materialized bytes=
// :: INFO mapred.JobClient: Combine output records=
// :: INFO mapred.JobClient: Map input records=
// :: INFO mapred.JobClient: Reduce shuffle bytes=
// :: INFO mapred.JobClient: Reduce output records=
// :: INFO mapred.JobClient: Spilled Records=
// :: INFO mapred.JobClient: Map output bytes=
// :: INFO mapred.JobClient: Total committed heap usage (bytes)=
// :: INFO mapred.JobClient: Combine input records=
// :: INFO mapred.JobClient: Map output records=
// :: INFO mapred.JobClient: SPLIT_RAW_BYTES=
// :: INFO mapred.JobClient: Reduce input records=
结果
MapReduce应用案例--简单排序的更多相关文章
- MapReduce应用案例--简单的数据去重
1. 设计思路 去重,重点就是无论某个数据在文件中出现多少次,最后只是输出一次就可以. 根据这一点,我们联想到在reduce阶段数据输入形式是 <key, value list>,只要是k ...
- 批处理引擎MapReduce应用案例
批处理引擎MapReduce应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce能够解决的问题有一个共同特点:任务可以被分解为多个子问题,且这些子问题相对独立 ...
- Java数据结构和算法之数组与简单排序
一.数组于简单排序 数组 数组(array)是相同类型变量的集合,可以使用共同的名字引用它.数组可被定义为任何类型,可以是一维或多维.数组中的一个特别要素是通过下标来访问它.数组提供了一种将有联系的信 ...
- 简单排序算法 C++类实现
简单排序算法: 冒泡排序 插入排序 选择排序 .h代码: // // SortClass.h // sort and selection // // Created by wasdns on 16/1 ...
- iOS简单排序--字母排序、NSDictionary排序
// 数组用系统方法compare做字母的简单排序 NSArray *oldArray = @[@"bac",@"bzd",@"azc",@ ...
- 简单排序算法设计(Java)
总共有八种排序算法,还是慢慢看吧 1.简单排序算法 简单排序算法就是设置标兵,逐个比较数,然后查找插入位置,插入 public static void p(int[] a){ for(int i=0; ...
- Java数据结构和算法 - 简单排序
Q: 冒泡排序? A: 1) 比较相邻的元素.如果第一个比第二个大,就交换它们两个; 2) 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数; 3) 针 ...
- 《Algorithms算法》笔记:元素排序(1)——简单排序
<Algorithms算法>元素排序(1)——简单排序 Algorithms算法元素排序1简单排序 排序问题 1 回调函数 2Java中回调函数的路线图 3 全序 4 Comparable ...
- MapReduce 使用案例
MapReduce 使用案例 MapReduce在面试过程中出现的频率还是挺高的,尤其是数据挖掘等岗位.通常面试官会出一个大数据题目,需要被试者根据题目设计基于MapReduce的算法来解答.我在一个 ...
随机推荐
- IOS - Passbook
1. 什么是Passbook Passbook是苹果公司于北京时间2012年6月12日上午,在全球开发者大会(WWDC)上宣布了iOS 6系统将提供操作一个全新的应用——Passbook 这是一款可以 ...
- ASP.NET SignalR 与 LayIM2.0 配合轻松实现Web聊天室(四) 之 用户搜索(Elasticsearch),加好友流程(1)。
前面几篇基本已经实现了大部分即时通讯功能:聊天,群聊,发送文件,图片,消息.不过这些业务都是比较粗犷的.下面我们就把业务细化,之前用的是死数据,那我们就从加好友开始吧.加好友,首先你得知道你要加谁.L ...
- CLR via C#(04)- 本是同根生
一.等值性——Equals()方法 有时候我们需要比较两个对象是否相等,比如在一个ArrayList中进行排序查找等操作时. System.Object提供了Equals()虚方法: class Ob ...
- gbdt可视化
gbdt的最大优点,和决策树一样,高度可解释,最喜欢的分类模型:) #!/usr/bin/env python #coding=gbk # ============================== ...
- 理解Java中的final和static关键字
回顾这两个关键字前,先考虑一个问题: Static变量存储在JVM中的位置,或者说static变量是如何被加载的? JVM会把类的静态方法和静态变量在类加载的过程中读入方法区(Method Area) ...
- Java集合源码学习(五)几种常用集合类的比较
这篇笔记对几个常用的集合实现,从效率,线程安全和应用场景进行综合比较. >>ArrayList.LinkedList与Vector的对比 (1)相同和不同都实现了List接口,使用类似.V ...
- JavaScript - call(this)
为什么使用call(this), 而不是直接使用(function(){})(); "use strict" function Foo() { (function() { cons ...
- hdu 4739 2013杭州赛区网络赛 寻找平行坐标轴的四边形 **
是平行坐标轴的,排个序搞一下就行了,卧槽,水的不行 如果不是平行的,则需要按照边长来判断
- C#中var和dynamic
var与dynamic这两个关键字,只是看起来很相似,仅此而已!var表示“变量的类型是在编译时决定的”,但是dynamic表 示“变量的类型是在运行时决定的”.因此,dynamic与var具有截然不 ...
- C++读取文件夹中所有的文件或者是特定后缀的文件
由于经常有读取一个文件夹中的很多随机编号的文件,很多时候需要读取某些特定格式的所有文件. 下面的代码可以读取指定文件家中的所有文件和文件夹中格式为jpg的文件 参考: http://www.2cto. ...