没什么好说的。

可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲。

Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的。。

 #include<bits/stdc++.h>
#define ll long long
#define N 20005
using namespace std;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,m,rt[N],tot;
int f[N*],ls[N*],rs[N*];
void build(int &x,int l,int r){
x=++tot;
if(l==r){f[x]=l;return;}
int mid=l+r>>;
build(ls[x],l,mid);
build(rs[x],mid+,r);
}
int find(int x,int l,int r,int pos){
if(l==r)return f[x];
int mid=l+r>>;
if(pos<=mid)return find(ls[x],l,mid,pos);
else return find(rs[x],mid+,r,pos);
}
void update(int pre,int &x,int l,int r,int pos,int val){
x=++tot;ls[x]=ls[pre];rs[x]=rs[pre];
if(l==r){f[x]=val;return;}
int mid=l+r>>;
if(pos<=mid)update(ls[pre],ls[x],l,mid,pos,val);
else update(rs[pre],rs[x],mid+,r,pos,val);
}
int findfa(int ti,int x){
int tmp=find(rt[ti],,n,x);
if(tmp==x)return x;
else{
tmp=findfa(ti,tmp);
update(rt[ti],rt[ti],,n,x,tmp);
return tmp;
}
}
void unite(int ti,int x,int y){
int fx=findfa(ti,x),fy=findfa(ti,y);
if(fx<fy)swap(x,y),swap(fx,fy);
if(fx!=fy)update(rt[ti],rt[ti],,n,fx,fy);
}
int main(){
n=read();m=read();
build(rt[],,n);
for(int i=;i<=m;i++){
rt[i]=rt[i-];
int t=read();
if(t==){
int x=read(),y=read();
unite(i,x,y);
}
else if(t==){
int k=read();rt[i]=rt[k];
}
else{
int x=read(),y=read();
findfa(i,x)==findfa(i,y)?puts(""):puts("");
}
}
return ;
}

3673: 可持久化并查集 by zky

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 1506  Solved: 677
[Submit][Status][Discuss]

Description

n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<n,m<=2*10^4

Input

 

Output

 

Sample Input

5 6
1 1 2
3 1 2
2 0
3 1 2
2 1
3 1 2

Sample Output

1
0
1

【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树的更多相关文章

  1. BZOJ3673 可持久化并查集 by zky 可持久化 并查集

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3673 题意概括 n个集合 m个操作操作:1 a b 合并a,b所在集合2 k 回到第k次操作之后的 ...

  2. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  3. BZOJ3673 可持久化并查集 by zky 【主席树】

    BZOJ3673 可持久化并查集 by zky Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a ...

  4. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  5. 3673: 可持久化并查集 by zky

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2170  Solved: 978[Submit][Status ...

  6. Bzoj 3673: 可持久化并查集 by zky(主席树+启发式合并)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MB Description n个集合 m个操作 操作: 1 a b 合并a,b所在集 ...

  7. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  8. bzoj 3673&3674: 可持久化并查集 by zky

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  9. bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)

    Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...

随机推荐

  1. Linux文件系统(inode、block……)

    内容源于<鸟哥的Linux私房菜> 认识 EXT2 文件系统 文件系统的特殊观察与操作 文件系统 superblock,inode,block superblock,inode,block ...

  2. Excel数据挖掘插件

    Excel是大家非常熟悉的表格工具,借助它可以实现日程工作中最原始的数据处理的基本的功能,此外通过 SQL Server插件的支持,我们也可以在Excel中实现数据挖掘的功能. 此篇将先介绍Excel ...

  3. 使用nbrbutil工具來處理requested media id is in use, cannot process request

    首先我發現一個Media已經過期很久,但是并不會覆蓋重用 使用bpexpdate手動過期,失敗,讓他deassigned也不行 使用bpimmedia查看上面的image也沒有 我嘗試手動去過期,返回 ...

  4. phpMailer邮件发送

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. c中malloc的用法

    转自:http://blog.sina.com.cn/s/blog_966f8e8501010if7.html Malloc 向系统申请分配指定size个字节的内存空间.返回类型是 void* 类型. ...

  6. 中断处理流程,ok6410

    中断处理流程 CPU在工作的过程中,经常需要与外设进行交互,交互的方式包括”轮询方式”,”中断方式”. 1.轮询方式: CPU不断地查询设备的状态.该方式实现比较简单,但CPU利用率很低,不适合多任务 ...

  7. 3D建模与处理软件简介

    [前言]自半年前笔者发表博客“什么是计算机图形学”以来,时常有人来向笔者询问3D模型的构建方法与工具.笔者的研究方向是以3D技术为主,具体包括3D建模,3D处理及3D打印三个方面,在3D建模与处理方面 ...

  8. 通过PID获取进程路径的几种方法

    通过PID获取进程路径的几种方法 想获得进程可执行文件的路径最常用的方法是通过GetModuleFileNameEx函数获得可执行文件的模块路径这个函数从Windows NT 4.0开始到现在的Vis ...

  9. Vs2012调试本地windows服务

    背景: 在我的工作经历中,我用到了一个我们以前学习中没有接触过的老东西-服务.之所说以前没有接触过,是因为自己没有系统的研究过这东西:之所以又说它是老东西,是因为我们其实早就知道他的存在,经常用它去干 ...

  10. POJ 3067 Japan(经典树状数组)

    基础一维树状数组  题意:左边一排 1-n 的城市,右边一排 1-m 的城市,都从上到下依次对应.接着给你一些城市对,表示城市这两个城市相连,最后问你一共有多少个交叉,其中处于城市处的交叉不算并且每个 ...