[问题2015S04] 设 \(A\) 为 \(n\) 阶方阵, \(C\) 为 \(k\times n\) 矩阵, 且对任意的 \(\lambda\in\mathbb{C}\), \(\begin{pmatrix}A-\lambda I_n\\ C \end{pmatrix}\) 均为列满秩阵. 证明: 对任意的 \(\lambda\in\mathbb{C}\), \(\begin{pmatrix}C \\ C(A-\lambda I_n) \\ C(A-\lambda I_n)^2 \\ \vdots \\ C(A-\lambda I_n)^{n-1} \end{pmatrix}\) 均为列满秩阵.

  本题由楼红卫教授提供.

问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0

[问题2015S04] 复旦高等代数 II(14级)每周一题(第五教学周)的更多相关文章

  1. [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)

    [问题2015S01]  设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...

  2. [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)

    [问题2015S08]  设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...

  3. [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)

    问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...

  4. [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)

    [问题2014S09]  证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...

  5. [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)

    [问题2014A07]  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...

  6. [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)

    问题2014S02  设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...

  7. [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)

    [问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...

  8. 复旦高等代数II(18级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...

  9. 复旦高等代数 II(17级)每周一题

    本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...

随机推荐

  1. php发送邮件处理功能页面去除重复的邮箱地址

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. [转]快速构建App界面的框架(●'◡'●) -----SalutJs

    前言 卤煮在公司之初接触到的是一个微信APP应用.前端技术采用的是Backbone+zepto等小型JS类库.在项目开发之初,这类中小型的项目采用这两种库可以满足基本的需求.然而,随着迭代的更新和业务 ...

  3. mysql5.5手册读书日记(2)

    <?php /* * * MySQL_5.5中文参考手册 485开始 * * mysql> SELECT CASE 1 WHEN 1 THEN 'one' -> WHEN 2 THE ...

  4. 多维数组问题 int (*a)[] int []

    今天做调整方阵这道题: 第一遍提交没有通过, 又gdb 重新温故了 交换二维数组中的两行数据: void swap(int *a, int *b) { int t = *a; *a = *b; *b ...

  5. Xcode离线安装帮助文档

    Xcode离线安装帮助文档   1.在线查看帮助文件:Xcode下查看帮助文件,菜单Help-Developer Documentation在右上角搜索框中即可检索,但速度很慢,在线查看. 2.下载帮 ...

  6. hibernate学习(5)——对象状态与一级缓存

    1.对象状态 1.1   状态介绍 hibernate 规定三种状态:瞬时态.持久态.脱管态 瞬时态:transient,session没有缓存对象,数据库也没有对应记录.没有与hibernate关联 ...

  7. Java初始化生命周期

    package com.init; abstract class Glyph { void draw() { System.out.println("Glyph.draw()"); ...

  8. js滚动加载插件

    function $xhyload(o){ var that=this; if(!o){ return; }else{ that.win=$(o.config.obj); that.qpanel=$( ...

  9. SLAM数据集

    数据集 New College Dataset :: Main / Downloads Autonomous Space Robotics Lab: Devon Island Rover Naviga ...

  10. XML转换为对象操作类详解

    //XML转换为对象操作类 //一,XML与Object转换类 using System.IO; using System.Runtime.Serialization.Formatters.Binar ...