Pandas继承了Numpy的运算功能,可以快速对每个元素进行运算,即包括基本运算(加减乘除等),也包括复杂运算(三角函数、指数函数和对数函数等)。

通用函数使用

apply和applymap

apply(func,axis=0,broadcast=None,raw=False,reduce=None,result_type=None,args=(),**kwds,)

applymap(func)
In [4]: frame = pd.DataFrame(np.random.randn(4,3),columns=list('bde'),
index=['Utah','Ohio','Texas','Oregon']) In [5]: frame
Out[5]:
b d e
Utah 0.471961 -0.399978 -0.874515
Ohio -0.975614 -0.521370 -0.760090
Texas -1.117619 -1.179684 -1.067536
Oregon 0.874380 -1.233453 -1.165621 #创建一个匿名函数:最大值-最小值
In [7]: f = lambda x: x.max()-x.min() # 默认axis = 0
In [8]: frame.apply(f)
Out[8]:
b 1.991999
d 0.833475
e 0.405531
dtype: float64 In [9]: frame.apply(f,axis=1)
Out[9]:
Utah 1.346476
Ohio 0.454245
Texas 0.112147
Oregon 2.107833
dtype: float64 #定义一个提取最小值和最大值的函数
In [10]: def f(x):
...: return pd.Series([x.min(),x.max()],index=['min','max']) In [11]: frame.apply(f)
Out[11]:
b d e
min -1.117619 -1.233453 -1.165621
max 0.874380 -0.399978 -0.760090 In [12]: format = lambda x : '%.2f'%x In [13]: frame.applymap(format)
Out[13]:
b d e
Utah 0.47 -0.40 -0.87
Ohio -0.98 -0.52 -0.76
Texas -1.12 -1.18 -1.07
Oregon 0.87 -1.23 -1.17 In [14]: frame['e'].map(format)
Out[14]:
Utah -0.87
Ohio -0.76
Texas -1.07
Oregon -1.17
Name: e, dtype: object

一元运算

Pandas在进行一元运算(函数等),输出的结果会保留索引和列标签。

Series

In [1]: import pandas as pd
In [2]: import numpy as np #确定一个随机种子
In [3]: rng = np.random.RandomState(42) In [4]: ser = pd.Series(rng.randint(0,10,4)) In [5]: ser
Out[5]:
0 6
1 3
2 7
3 4
dtype: int32 In [6]: np.exp(ser)
Out[6]:
0 403.428793
1 20.085537
2 1096.633158
3 54.598150
dtype: float64

DataFrame

In [7]: df = pd.DataFrame(rng.randint(0,10,(3,4)),columns=list('ABCD'))

In [8]: df
Out[8]:
A B C D
0 6 9 2 6
1 7 4 3 7
2 7 2 5 4 In [9]: np.sin(df*np.pi/4)
Out[9]:
A B C D
0 -1.000000 7.071068e-01 1.000000 -1.000000e+00
1 -0.707107 1.224647e-16 0.707107 -7.071068e-01
2 -0.707107 1.000000e+00 -0.707107 1.224647e-16

二元运算

进行二元运算时(如加法和减法等),Pandas会在计算过程中自动对齐两个对象的索引。在直接应用Python运算符时,在缺失位置会用NaN填充,这种方法是Python的内置集合运算规则;用Pandas方法(可设置填充值或填充方法)代替运算符,可以避免NaN产生。

Python运算符 Pandas方法
+ add(),radd()
- sub(),rsub()
* mul(),rmul()
/ div(),rdiv()
// floordiv(),rfloordiv()
% mod()
** pow(),rpow()

Series

In [10]: A = pd.Series([2,4,6],index=[0,1,2])

In [11]: B = pd.Series([1,3,5],index=[1,2,3])

#索引不匹配时以NaN填充
In [12]: A + B
Out[12]:
0 NaN
1 5.0
2 9.0
3 NaN
dtype: float64 In [13]: A.add(B)
Out[13]:
0 NaN
1 5.0
2 9.0
3 NaN
dtype: float64 #fill_value表示不匹配时缺失值以0填充后再运算
In [14]: A.add(B,fill_value=0)
Out[14]:
0 2.0
1 5.0
2 9.0
3 5.0
dtype: float64

DataFrame

In [15]: C = pd.DataFrame(rng.randint(0,20,(2,2)))
In [16]: D = pd.DataFrame(rng.randint(0,10,(3,3))) In [17]: C
Out[17]:
0 1
0 1 11
1 5 1 In [18]: D
Out[18]:
0 1 2
0 4 0 9
1 5 8 0
2 9 2 6 In [19]: C.columns = list('AB') In [20]: C
Out[20]:
A B
0 1 11
1 5 1 In [21]: D.columns = list('ABC') In [21]: D
Out[21]:
A B C
0 4 0 9
1 5 8 0
2 9 2 6 #索引不匹配时以NaN填充
In [23]: C + D
Out[23]:
A B C
0 5.0 11.0 NaN
1 10.0 9.0 NaN
2 NaN NaN NaN In [24]: C.stack()
Out[24]:
0 A 1
B 11
1 A 5
B 1
dtype: int32 In [25]: fill = C.stack().mean() In [26]: fill
Out[26]: 4.5 #fill_value表示不匹配时缺失值以4.5填充后再运算
In [27]: C.add(D,fill_value=fill)
Out[27]:
A B C
0 5.0 11.0 13.5
1 10.0 9.0 4.5
2 13.5 6.5 10.5

Series与DataFrame的结合运算

Series与DataFrame结合运算,会根据Numpy的广播规则对Series进行处理后,再与DataFrame运算。

In [36]: A = rng.randint(10,size=(3,4))

In [37]: A
Out[37]:
array([[3, 8, 2, 4],
[2, 6, 4, 8],
[6, 1, 3, 8]]) In [38]: df = pd.DataFrame(A,columns = list('ABCD')) In [39]: ser = pd.Series(A[0],index=list('ABCD')) In [40]: df
Out[40]:
A B C D
0 3 8 2 4
1 2 6 4 8
2 6 1 3 8 In [41]: ser
Out[41]:
A 3
B 8
C 2
D 4
dtype: int32 #ser经过广播后变成3*4的数组,与df的3*4数组以列标签对齐进行运算
In [42]: df - ser
Out[42]:
A B C D
0 0 0 0 0
1 -1 -2 2 4
2 3 -7 1 4 In [43]: ser2 = df['B'] In [44]: ser2
Out[44]:
0 8
1 6
2 1
Name: B, dtype: int32 #ser2经过广播后变成3*4的数组,与df的3*4数组以行索引对齐进行运算
In [46]: df.subtract(ser2,axis=0)
Out[46]:
A B C D
0 -5 0 -6 -4
1 -4 0 -2 2
2 5 0 2 7

Pandas通用函数和运算的更多相关文章

  1. Pandas分组级运算和转换

    分组级运算和转换 假设要添加一列的各索引分组平均值 第一种方法 import pandas as pd from pandas import Series import numpy as np df ...

  2. pandas之聚合运算

    通过聚合运算可以得到我们比较感兴趣的数据以方便处理 import pandas as pd import numpy as np # 先创建一组数据表DataFrame df = pd.DataFra ...

  3. pandas | DataFrame基础运算以及空值填充

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第四篇文章,我们一起来聊聊DataFrame中的索引. 上一篇文章当中我们介绍了DataFrame数据结构当 ...

  4. 数据分析工具Pandas

        参考学习资料:http://pandas.pydata.org 1.什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analys ...

  5. pandas数据对齐

    Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充NaN Series的对齐运算 1. Series 按行.索引对齐 示例代码: s1 = ...

  6. Python之Pandas库常用函数大全(含注释)

    前言:本博文摘抄自中国慕课大学上的课程<Python数据分析与展示>,推荐刚入门的同学去学习,这是非常好的入门视频. 继续一个新的库,Pandas库.Pandas库围绕Series类型和D ...

  7. (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    *从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一.简介 pandas提供了很多方 ...

  8. Python数据分析与展示[第三周](pandas数据类型操作)

    数据类型操作 如何改变Series/ DataFrame 对象 增加或重排:重新索引 删除:drop 重新索引 .reindex() reindex() 能够改变或重排Series和DataFrame ...

  9. Python for Data Analysis 学习心得(二) - pandas介绍

    一.pandas介绍 本篇程序上篇内容,在numpy下面继续介绍pandas,本书的作者是pandas的作者之一.pandas是非常好用的数据预处理工具,pandas下面有两个数据结构,分别为Seri ...

  10. 《利用python进行数据分析》读书笔记--第十一章 金融和经济数据应用(一)

    自2005年开始,python在金融行业中的应用越来越多,这主要得益于越来越成熟的函数库(NumPy和pandas)以及大量经验丰富的程序员.许多机构发现python不仅非常适合成为交互式的分析环境, ...

随机推荐

  1. picgo如何设置又拍云图床

    1. 打开又拍云官网.正常注册,并且实名认证. 2. 选择产品,然后选择云存储,激活后进入控制台. 3. 创建云存储服务.注意服务名称.后续会用到 4. 新建一个操作员,并且给权限全部打勾. 添加好操 ...

  2. [Node] nvm 安装 node 和 npm

    Node JS 安装 安装 node version manager (nvm) Windows: https://github.com/coreybutler/nvm-windows/release ...

  3. 【Azure 存储服务】.NET7.0 示例代码之上传大文件到Azure Storage Blob (二)

    问题描述 在上一篇博文([Azure 存储服务].NET7.0 示例代码之上传大文件到Azure Storage Blob (一):https://www.cnblogs.com/lulight/p/ ...

  4. PHP项目&TP框架&SQL&XSS&架构&路由&调试&写法

    开发基础-TP框架-入口&调试&路由&写法等 参考手册-TP5开发手册-为了掌握了解框架 首页文件看APP_PATH定义-为了后期分析核心代码 全局搜索:THINK_VERSI ...

  5. 机器学习从入门到放弃:卷积神经网络CNN(二)

    一.前言 通过上一篇文章,我们大概了解了卷积是什么,并且分析了为什么卷积能在图像识别上起到巨大的作用.接下来,废话不多话,我们自己尝试动手搭建一个简易的CNN网络. 二.准备工作 在开始的时候,我们首 ...

  6. golang开发:环境篇(三)开发利器Goland安装

    这节主要介绍下golang开发的最主要的IDE,Goland.可以有效提高开发效率.用过一段时间 IntelliJ+GO插件,其实功能上跟goland差不多.不过团队的其它开发者基本都是Goland, ...

  7. MySql注入—DNS注入

    MySql注入-DNS注入 1.DNS注入原理 一.DNS注入原理 DNS注入,是通过查询相应DNS解析产生的记录日志来获取想要的数据 对于sql盲注这样的方法常常用到二分法,非常麻烦而且没有回显,要 ...

  8. day07-JavaScript04

    JavaScript04 11.DOM02 11.3HTML-DOM文档说明 11.3.1基本介绍 在HTML DOM(文档对象模型)中,每个部分都是节点: 1)文档本身是文档节点 2)所有HTML元 ...

  9. MyEclipse设置自动提醒(补全)功能

    1. 打开MyEclipse,然后"window"→"Preferences" 2. 选择"java",展开,"Editor&qu ...

  10. vscode远程登陆免密码

    A,B双方通信,A想向B发送信息,又不想让别人知道,使用非对称加密:若A向B发送信息,A需要知道B的公钥简称B-pub,用B-pub加密信息后 发送给B,B再用自己的私钥B-prv解密出信息. A想验 ...