场景介绍

MindSpore Lite是一款AI引擎,它提供了面向不同硬件设备AI模型推理的功能,目前已经在图像分类、目标识别、人脸识别、文字识别等应用中广泛使用。

本文介绍使用MindSpore Lite推理引擎进行模型推理的通用开发流程。

基本概念

在进行开发前,请先了解以下概念。

张量:它与数组和矩阵非常相似,是MindSpore Lite网络运算中的基本数据结构。

Float16推理模式: Float16又称半精度,它使用16比特表示一个数。Float16推理模式表示推理的时候用半精度进行推理。

接口说明

这里给出MindSpore Lite推理的通用开发流程中涉及的一些接口,具体请见下列表格。

Context 相关接口

接口名称

描述

OH_AI_ContextHandle OH_AI_ContextCreate()

创建一个上下文的对象。

void OH_AI_ContextSetThreadNum(OH_AI_ContextHandle context, int32_t thread_num)

设置运行时的线程数量。

void OH_AI_ContextSetThreadAffinityMode(OH_AI_ContextHandle context, int mode)

设置运行时线程绑定CPU核心的策略,按照CPU物理核频率分为大、中、小三种类型的核心,并且仅需绑大核或者绑中核,不需要绑小核。

OH_AI_DeviceInfoHandle OH_AI_DeviceInfoCreate(OH_AI_DeviceType device_type)

创建一个运行时设备信息对象。

void OH_AI_ContextDestroy(OH_AI_ContextHandle *context)

释放上下文对象。

void OH_AI_DeviceInfoSetEnableFP16(OH_AI_DeviceInfoHandle device_info, bool is_fp16)

设置是否开启Float16推理模式,仅CPU/GPU设备可用。

void OH_AI_ContextAddDeviceInfo(OH_AI_ContextHandle context, OH_AI_DeviceInfoHandle device_info)

添加运行时设备信息。

Model 相关接口

接口名称

描述

OH_AI_ModelHandle OH_AI_ModelCreate()

创建一个模型对象。

OH_AI_Status OH_AI_ModelBuildFromFile(OH_AI_ModelHandle model, const char *model_path,OH_AI_ModelType odel_type, const OH_AI_ContextHandle model_context)

通过模型文件加载并编译MindSpore模型。

void OH_AI_ModelDestroy(OH_AI_ModelHandle *model)

释放一个模型对象。

Tensor 相关接口

接口名称

描述

OH_AI_TensorHandleArray OH_AI_ModelGetInputs(const OH_AI_ModelHandle model)

获取模型的输入张量数组结构体。

int64_t OH_AI_TensorGetElementNum(const OH_AI_TensorHandle tensor)

获取张量元素数量。

const char *OH_AI_TensorGetName(const OH_AI_TensorHandle tensor)

获取张量的名称。

OH_AI_DataType OH_AI_TensorGetDataType(const OH_AI_TensorHandle tensor)

获取张量数据类型。

void *OH_AI_TensorGetMutableData(const OH_AI_TensorHandle tensor)

获取可变的张量数据指针。

开发步骤

使用MindSpore Lite进行模型推理的开发流程如下图所示。图1 使用MindSpore Lite进行模型推理的开发流程

进入主要流程之前需要先引用相关的头文件,并编写函数生成随机的输入,具体如下:

#include <stdlib.h>
#include <stdio.h>
#include "mindspore/model.h" //生成随机的输入
int GenerateInputDataWithRandom(OH_AI_TensorHandleArray inputs) {
for (size_t i = 0; i < inputs.handle_num; ++i) {
float *input_data = (float *)OH_AI_TensorGetMutableData(inputs.handle_list[i]);
if (input_data == NULL) {
printf("MSTensorGetMutableData failed.\n");
return OH_AI_STATUS_LITE_ERROR;
}
int64_t num = OH_AI_TensorGetElementNum(inputs.handle_list[i]);
const int divisor = 10;
for (size_t j = 0; j < num; j++) {
input_data[j] = (float)(rand() % divisor) / divisor; // 0--0.9f
}
}
return OH_AI_STATUS_SUCCESS;
}

  

然后进入主要的开发步骤,具括包括模型的准备、读取、编译、推理和释放,具体开发过程及细节请见下文的开发步骤及示例。

1.  模型准备。

需要的模型可以直接下载,也可以通过模型转换工具获得。

a.  下载模型的格式若为.ms,则可以直接使用。本文以mobilenetv2.ms为例。

b.  如果是第三方框架的模型,比如 TensorFlow、TensorFlow Lite、Caffe、ONNX等,可以使用模型转换工具转换为.ms格式的模型文件。

2.  创建上下文,设置线程数、设备类型等参数。

// 创建并配置上下文,设置运行时的线程数量为2,绑核策略为大核优先
OH_AI_ContextHandle context = OH_AI_ContextCreate();
if (context == NULL) {
printf("OH_AI_ContextCreate failed.\n");
return OH_AI_STATUS_LITE_ERROR;
}
const int thread_num = 2;
OH_AI_ContextSetThreadNum(context, thread_num);
OH_AI_ContextSetThreadAffinityMode(context, 1);
//设置运行设备为CPU,不使用Float16推理
OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU);
if (cpu_device_info == NULL) {
printf("OH_AI_DeviceInfoCreate failed.\n");
OH_AI_ContextDestroy(&context);
return OH_AI_STATUS_LITE_ERROR;
}
OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, false);
OH_AI_ContextAddDeviceInfo(context, cpu_device_info);

  

3.  创建、加载与编译模型。

调用OH_AI_ModelBuildFromFile加载并编译模型。

本例中传入OH_AI_ModelBuildFromFile的argv[1]参数是从控制台中输入的模型文件路径。

// 创建模型
OH_AI_ModelHandle model = OH_AI_ModelCreate();
if (model == NULL) {
printf("OH_AI_ModelCreate failed.\n");
OH_AI_ContextDestroy(&context);
return OH_AI_STATUS_LITE_ERROR;
} // 加载与编译模型,模型的类型为OH_AI_MODELTYPE_MINDIR
int ret = OH_AI_ModelBuildFromFile(model, argv[1], OH_AI_MODELTYPE_MINDIR, context);
if (ret != OH_AI_STATUS_SUCCESS) {
printf("OH_AI_ModelBuildFromFile failed, ret: %d.\n", ret);
OH_AI_ModelDestroy(&model);
return ret;
}

  

4.  输入数据。

模型执行之前需要向输入的张量中填充数据。本例使用随机的数据对模型进行填充。

// 获得输入张量
OH_AI_TensorHandleArray inputs = OH_AI_ModelGetInputs(model);
if (inputs.handle_list == NULL) {
printf("OH_AI_ModelGetInputs failed, ret: %d.\n", ret);
OH_AI_ModelDestroy(&model);
return ret;
}
// 使用随机数据填充张量
ret = GenerateInputDataWithRandom(inputs);
if (ret != OH_AI_STATUS_SUCCESS) {
printf("GenerateInputDataWithRandom failed, ret: %d.\n", ret);
OH_AI_ModelDestroy(&model);
return ret;
}

  

5.  执行推理。

使用OH_AI_ModelPredict接口进行模型推理。

// 执行模型推理
OH_AI_TensorHandleArray outputs;
ret = OH_AI_ModelPredict(model, inputs, &outputs, NULL, NULL);
if (ret != OH_AI_STATUS_SUCCESS) {
printf("OH_AI_ModelPredict failed, ret: %d.\n", ret);
OH_AI_ModelDestroy(&model);
return ret;
}

  

6.  获取输出。

模型推理结束之后,可以通过输出张量得到推理结果。

// 获取模型的输出张量,并打印
for (size_t i = 0; i < outputs.handle_num; ++i) {
OH_AI_TensorHandle tensor = outputs.handle_list[i];
int64_t element_num = OH_AI_TensorGetElementNum(tensor);
printf("Tensor name: %s, tensor size is %zu ,elements num: %lld.\n", OH_AI_TensorGetName(tensor),
OH_AI_TensorGetDataSize(tensor), element_num);
const float *data = (const float *)OH_AI_TensorGetData(tensor);
printf("output data is:\n");
const int max_print_num = 50;
for (int j = 0; j < element_num && j <= max_print_num; ++j) {
printf("%f ", data[j]);
}
printf("\n");
}

  

7.  释放模型。

不再使用MindSpore Lite推理框架时,需要释放已经创建的模型。

// 释放模型
OH_AI_ModelDestroy(&model);

  

调测验证

1.  编写CMakeLists.txt。

cmake_minimum_required(VERSION 3.14)
project(Demo) add_executable(demo main.c) target_link_libraries(
demo
mindspore-lite.huawei
pthread
dl
)

  

● 使用ohos-sdk交叉编译,需要对CMake设置native工具链路径,即:-DCMAKE_TOOLCHAIN_FILE="/xxx/native/build/cmake/ohos.toolchain.camke"。

● 工具链默认编译64位的程序,如果要编译32位,需要添加:-DOHOS_ARCH="armeabi-v7a"。

2.  运行。

● 使用hdc_std连接设备,并将demo和mobilenetv2.ms推送到设备中的相同目录。

● 使用hdc_std shell进入设备,并进入demo所在的目录执行如下命令,即可得到结果。

./demo mobilenetv2.ms

  

得到如下输出:

# ./QuickStart ./mobilenetv2.ms
Tensor name: Softmax-65, tensor size is 4004 ,elements num: 1001.
output data is:
0.000018 0.000012 0.000026 0.000194 0.000156 0.001501 0.000240 0.000825 0.000016 0.000006 0.000007 0.000004 0.000004 0.000004 0.000015 0.000099 0.000011 0.000013 0.000005 0.000023 0.000004 0.000008 0.000003 0.000003 0.000008 0.000014 0.000012 0.000006 0.000019 0.000006 0.000018 0.000024 0.000010 0.000002 0.000028 0.000372 0.000010 0.000017 0.000008 0.000004 0.000007 0.000010 0.000007 0.000012 0.000005 0.000015 0.000007 0.000040 0.000004 0.000085 0.000023

  

HarmonyOS:使用MindSpore Lite引擎进行模型推理的更多相关文章

  1. 全场景AI推理引擎MindSpore Lite, 助力HMS Core视频编辑服务打造更智能的剪辑体验

    移动互联网的发展给人们的社交和娱乐方式带来了很大的改变,以vlog.短视频等为代表的新兴文化样态正受到越来越多人的青睐.同时,随着AI智能.美颜修图等功能在图像视频编辑App中的应用,促使视频编辑效率 ...

  2. 超轻量AI引擎MindSpore Lite

    超轻量AI引擎MindSpore Lite 揭秘一下端上的AI引擎:MindSpore Lite. MindSpore Lite是MindSpore全场景AI框架的端侧引擎,目前MindSpore L ...

  3. MindSpore模型推理

    MindSpore模型推理 如果想在应用中使用自定义的MindSpore Lite模型,需要告知推理器模型所在的位置.推理器加载模型的方式有以下三种: 加载本地模型. 加载远程模型. 混合加载本地和远 ...

  4. MindSpore Lite整体架构介绍

    MindSpore Lite整体架构介绍 MindSpore Lite框架的总体架构如下所示: 前端(Frontend): 负责模型生成,用户可以通过模型构建接口构建模型,将第三方模型和MindSpo ...

  5. 移动端目标识别(3)——使用TensorFlow Lite将tensorflow模型部署到移动端(ssd)之Running on mobile with TensorFlow Lite (写的很乱,回头更新一个简洁的版本)

    承接移动端目标识别(2) 使用TensorFlow Lite在移动设备上运行         在本节中,我们将向您展示如何使用TensorFlow Lite获得更小的模型,并允许您利用针对移动设备优化 ...

  6. 移动端目标识别(1)——使用TensorFlow Lite将tensorflow模型部署到移动端(ssd)之TensorFlow Lite简介

    平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多 ...

  7. 移动端目标识别(2)——使用TENSORFLOW LITE将TENSORFLOW模型部署到移动端(SSD)之TF Lite Developer Guide

    TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphD ...

  8. 天猫精灵业务如何使用机器学习PAI进行模型推理优化

    引言 天猫精灵(TmallGenie)是阿里巴巴人工智能实验室(Alibaba A.I.Labs)于2017年7月5日发布的AI智能语音终端设备.天猫精灵目前是全球销量第三.中国销量第一的智能音箱品牌 ...

  9. 【翻译】借助 NeoCPU 在 CPU 上进行 CNN 模型推理优化

    本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的  "Optimizing CNN Model Inference on CPUs" 原文链接: h ...

  10. 移动端 CPU 的深度学习模型推理性能优化——NCHW44 和 Record 原理方法详解

    用户实践系列,将收录 MegEngine 用户在框架实践过程中的心得体会文章,希望能够帮助有同样使用场景的小伙伴,更好地了解和使用 MegEngine ~ 作者:王雷 | 旷视科技 研发工程师 背景 ...

随机推荐

  1. consul 的 HTTP API 和使用方法

    目录 搭建起 consul Consul 的 HTTP API Service API 简单地注册服务 健康检查的配置和查询 建议读者先学习笔者的另一篇文章 学习搭建 Consul 服务发现与服务网格 ...

  2. FolkMQ 是怎样进行消息的事务处理?

    FolkMQ 提供了二段式提交的事务提交的机制(TCC 模型).允许生产者在发送消息时绑定到一个事务中并接收事务的管理,以确保消息的原子性(要么全成功,要么全失败).在 FolkMQ 中,事务是通过 ...

  3. Jmeter 响应断言你知道多少?

    1 断言各组件介绍 Apply to:同上 测试字段: * 响应文本:响应体 * 响应代码:响应状态码 * 响应信息:状态码的消息 * 响应头:顾名思义就是响应头 * 请求头:顾名思义就是请求头 * ...

  4. Go和TinyGo

    Go和TinyGo是两种不同的Go语言编译器,它们之间有以下几点区别: 目标平台: Go:Go语言编译器主要面向通用计算机平台,如Windows.Linux.macOS等. TinyGo:TinyGo ...

  5. system-design-primer 系统设计面试题

    system-design-primer 关键词:分布式.高并发.系统设计.面试 看腻了互联网上零碎.纷繁的面试题目? 来看看这个仓库吧,他系统介绍了对于大型系统的设计问题,并为系统设计面试做准备. ...

  6. Asp .Net Web Forms 系列:配置图片防盗链的几种方法

    通过 URL Rewrite Module 组件 URL Rewrite Module 是一个用于在 ASP.NET Web Forms 或其他基于 IIS 的 Web 应用程序中重写 URL 的强大 ...

  7. Android MaterialButtonToggleGroup使用

    原文地址: Android MaterialButtonToggleGroup使用 - Stars-One的杂货小窝 觉得单选框不好看,发现了一个Material里的单选按钮组,感觉UI还不错,记下使 ...

  8. Cloud XR面临的问题以及Cloud XR主要应用场景

    cloud xr面临的问题 带宽要求高:cloud xr需要实时把一个高码率的视频流,从云端传输到终端,这需要一个非常大的带宽. 延迟要求低:在传输的过程中,它需要一个非常低的时延,XR每进行一个新动 ...

  9. Android网络收集和ping封装库

    目录介绍 01.基础介绍 02.stetho大概流程 03.Android中应用 04.如何使用 05.案例截图如下 06.网络请求接口信息 07.如何使用ping 01.基础介绍 该工具作用 诸葛书 ...

  10. 如何打造一个花里胡哨的Github个人主页?

    1.介绍 2.使用 2.1.创建一个同名仓库 2.2.引用模板 2.3.为内容添加有趣模块 2.3.1.徽章badge 2.3.2.waka 时间展示 2.3.3.展示 GitHub stars 等信 ...