题目链接:点击打开链接

题意:给你一棵树,编号1~n,告诉你根结点是1。 每次有两个操作:

1,将以v为根的子树的结点全部染成颜色c

2,问以v为根的紫书的结点的颜色种类。

思路:如果这是一条线段的话, 那么这就是线段树的区间更新问题,而现在是一棵树。

因为告诉了根结点是1, 那么这棵树的任意一个结点的子树就是确定的, 所以我们可以用DFS的先序遍历,将所有结点重新编号,因为先序遍历的话, 任意一个结点和其子树的编号就是一条连续的线段了,在这其中维护每个结点的新编号, 和这个结点的子树中的最大编号即可。

然后就是线段树区间更新了, 由于颜色数最大60, 用long long通过位运算的 | 操作就行了, 注意对1左移的时候应该先将1转成long long再进行操作。

细节参见代码:

// Author : RioTian
// Time : 21/01/09
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int mod = 1000000000 + 7;
const int INF = 1000000000;
const int maxn = 400000 + 10;
int T, n, m, u, v, id[maxn], a[maxn], cnt, last[maxn], b[maxn], setv[maxn << 2];
bool vis[maxn];
ll sum[maxn << 2];
vector<int> g[maxn];
void dfs(int root) {
id[root] = ++cnt;
vis[root] = true;
int len = g[root].size();
for (int i = 0; i < len; i++) {
int v = g[root][i];
if (!vis[v]) {
dfs(v);
}
}
last[root] = cnt;
}
void PushUp(int o) {
sum[o] = sum[o << 1] | sum[o << 1 | 1];
}
void pushdown(int l, int r, int o) {
if (setv[o]) {
setv[o << 1] = setv[o << 1 | 1] = setv[o];
sum[o << 1] = sum[o << 1 | 1] = (1LL << setv[o]);
setv[o] = 0;
}
}
void build(int l, int r, int o) {
int m = (l + r) >> 1;
setv[o] = 0;
if (l == r) {
sum[o] = 1LL << b[++cnt];
return;
}
build(l, m, o << 1);
build(m + 1, r, o << 1 | 1);
PushUp(o);
}
void update(int L, int R, int v, int l, int r, int o) {
int m = (l + r) >> 1;
if (L <= l && r <= R) {
setv[o] = v;
sum[o] = (1LL << v);
return;
}
pushdown(l, r, o);
if (L <= m)
update(L, R, v, l, m, o << 1);
if (m < R)
update(L, R, v, m + 1, r, o << 1 | 1);
PushUp(o);
}
ll query(int L, int R, int l, int r, int o) {
int m = (l + r) >> 1;
if (L <= l && r <= R) {
return sum[o];
}
pushdown(l, r, o);
ll ans = 0;
if (L <= m)
ans |= query(L, R, l, m, o << 1);
if (m < R)
ans |= query(L, R, m + 1, r, o << 1 | 1);
PushUp(o);
return ans;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
g[u].clear();
}
for (int i = 1; i < n; i++) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
g[v].push_back(u);
}
memset(vis, 0, sizeof(vis));
cnt = 0;
dfs(1);
for (int i = 1; i <= n; i++) {
b[id[i]] = a[i];
}
cnt = 0;
build(1, n, 1);
int res, v, c;
while (m--) {
scanf("%d", &res);
if (res == 1) {
scanf("%d%d", &v, &c);
update(id[v], last[v], c, 1, n, 1);
} else {
scanf("%d", &v);
ll ans = query(id[v], last[v], 1, n, 1);
int cc = 0;
for (int i = 1; i <= 61; i++) {
if (ans & (1LL << i))
cc++;
}
printf("%d\n", cc);
}
}
return 0;
}

Educational Codeforces Round 6 620E. New Year Tree(DFS序+线段树)的更多相关文章

  1. CodeForces 620E:New Year Tree(dfs序+线段树)

    E. New Year Treetime limit per test3 secondsmemory limit per test256 megabytesinputstandard inputout ...

  2. codeforces 620E. New Year Tree dfs序+线段树+bitset

    题目链接 给一棵树, 每个节点有颜色, 两种操作, 一种是将一个节点的子树全都染色成c, 一种是查询一个节点的子树有多少个不同的颜色, c<=60. 每个节点一个bitset维护就可以. #in ...

  3. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  4. CodeForces 877E Danil and a Part-time Job(dfs序+线段树)

    Danil decided to earn some money, so he had found a part-time job. The interview have went well, so ...

  5. 数据结构(线段树):Educational Codeforces Round 6 620E. New Year Tree

    E. New Year Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  6. Educational Codeforces Round 6 E. New Year Tree dfs+线段树

    题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...

  7. Codeforces Round #225 (Div. 2) E. Propagating tree dfs序+-线段树

    题目链接:点击传送 E. Propagating tree time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  8. Educational Codeforces Round 81 (Rated for Div. 2)E(线段树)

    预处理把左集划分为大小为1~i-1时,把全部元素都移动到右集的代价,记作sum[i]. 然后枚举终态时左集的大小,更新把元素i 留在/移动到 左集的代价. 树状数组/线段树处理区间修改/区间查询 #d ...

  9. Educational Codeforces Round 72 (Rated for Div. 2)E(线段树,思维)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;#define BUF_SIZE 100000 ...

  10. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

随机推荐

  1. ubuntu20 安装 mysql5.7.31 , 卸载mysql 8.0, Mysql只能本地登录,无法远程登录

    ubuntu 18 可以直接命令安装:# 安装mysql服务sudo apt-get install mysql-server# 安装客户端sudo apt install mysql-client# ...

  2. 环形缓冲区 Ring Buffer 的实现

    环形缓冲区(Circular Buffer 或 Ring Buffer)是一种数据结构,它在逻辑上形成一个闭环.这种结构非常适用于需要固定大小的缓冲区的情况,如音频处理.网络通信.实时数据传输等.环形 ...

  3. 详细一些的vue生命周期

    如果你和我一样,以前对vue生命周期的理解仅限于生命周期钩子,那么本文可以让我们更深入一层,理解vue在生命周期各个阶段所做的事,对我们对vue的理解和使用很有好处. (1)通过new Vue()创建 ...

  4. Optional源码分析(涉及Objects源码和Stream源码)

    研究Optional源码之前先谈一谈Objects源码. 主要代码: @ForceInline public static <T> T requireNonNull(T obj) { if ...

  5. 解决URLEncoder.encode 编码空格变 + 号

    jdk自带的URL编码工具类 URLEncoder 在对字符串进行URI编码的时候,会把空格编码为 + 号. 空格的URI编码其实是:%20 解决办法:对编码后的字符串,进行 + 号替换为 %20.总 ...

  6. LeetCode224:基本计算器(栈)

    解题思路: 1.双栈模拟,一个用来存数,一个用来存操作符.需要考虑 '('后面紧跟'+'.'-'这种情况 2.递归:遇到左括号开始递归,遇到右括号结束递归,返回值. 1 class Solution: ...

  7. Javascript Ajax总结——GET请求和POST请求

    1.GET请求GET最常用于向服务器查询信息.可在URL末尾添加查询字符串参数.XHR中,传入open()方法的URL末尾的查询字符串必须经过正确的编码,使用encodeURIComponent()编 ...

  8. ElasticSearch之cat thread pool API

    命令样例如下: curl -X GET "https://localhost:9200/_cat/thread_pool?v=true&pretty" --cacert $ ...

  9. Spring Boot 整合 Log4j2 日志并压测性能

    1/ Log4j2的性能测试 从图中不难看出,在线程数为 2~16 之间,混合使用同步和异步的logger来打印日志,性能是最好的. 2/ 目标 混合 sync/async 彩色日志 分类输出到不同文 ...

  10. 如何上传你的组件到npm

    前言 以react为例子 webpack作为打包工具 准备工作 安装node npm上注册账号 https://www.npmjs.com/ 创建要上传组件 新建项目 生成package.json文件 ...