LG


LG9979 [USACO23DEC] Target Practice S

code

LG9980 [USACO23DEC] Flight Routes G

sol 1

已知邻接矩阵求路径数奇偶性是容易的,倒着做即可

bitset 实现。时间复杂度 \(O(\frac{n^{3}}{\omega})\)

sol 2

很神奇:矩阵求逆

LG9981 [USACO23DEC] Minimum Longest Trip G \(\star\)

sol 1

倍增+哈希

sol 2

考虑类似后缀平衡树的做法

DP 完最长路后按长度从小到大处理。设 \(rk[u]\) 为点 \(u\) 开始的字符串在同长度字符串中的排名,利用二元组 \((w,rk[v])\) 即可快速比较字典序

LG9982 [USACO23DEC] Haybale Distribution G

显然最优位置在谷仓上

key observation:设有 \(i\) 个点的坐标 \(\le x\),则从 \(x\) 移到 \(x+1\) 的增量为 \(ai+b(n-i)=(a+b)i-bn\),从左到右是递增的

做法很多:

  • 三分答案(注意可能有重点,需要离散化或在值域上三分)
  • 二分增量变号的位置
  • 直接解出增量变号的位置

LG9984 [USACO23DEC] A Graph Problem P \(\star\)

维护的信息等价于哈希,容易合并

题目给的算法是 prim,注意到 MST 唯一且任意时刻点集 \(S\) 都是 MST 的一个子树

考虑 kruskal。用边 \((u,v)\) 合并连通块时,任意 \(u\) 连通块中点 \(x\) 的扩展顺序一定是 \(u\) 连通块 \(\rightarrow v\rightarrow v\) 连通块,且扩展 \(v\) 连通块的顺序与 \(v\) 相同。因此 \(x\) 扩展到大连通块的答案 为 \(x\) 扩展到 \(u\) 连通块的答案、边 \((u,v)\)、\(v\) 扩展到 \(v\) 连通块的答案 顺次合并

需要 修改 kruskal 过程中一连通块 以及 在线查询,kruskal 重构树+带权并查集实现

USACO 23023DEC 题解的更多相关文章

  1. USACO 简易题解(蒟蒻的题解)

    蒟蒻难得可以去比赛,GDOI也快到了,还是认真刷题(不会告诉你之前都在颓废),KPM 神犇既然都推荐刷USACO, 辣就刷刷. 现在蒟蒻还没刷完,太蒟刷得太慢,so 写了的搞个简易题解(没代码,反正N ...

  2. USACO 5.3 Network of Schools

    Network of SchoolsIOI '96 Day 1 Problem 3 A number of schools are connected to a computer network. A ...

  3. USACO1.4.1 Packing Rectangles

    //毕竟我不是dd牛,USACO的题解也不可能一句话带过的…… 题目链接:http://cerberus.delos.com:790/usacoprob2?a=pWvHFwGsTb2&S=pa ...

  4. 解题:USACO14MAR Counting Friends

    题面 枚举每个数字是否能被删去,然后就是如何判定图是否存在.应该从按“度数”从大到小排序,从最大的顺次向其他点连边(先连“度数”小的可能会把一些可以和大“度数”点连接的点用掉).但是这个排序每连一次都 ...

  5. usaco training 3.4.3 fence9 题解

    Electric Fence题解 Don Piele In this problem, `lattice points' in the plane are points with integer co ...

  6. bzoj usaco 金组水题题解(1)

    UPD:我真不是想骗访问量TAT..一开始没注意总长度写着写着网页崩了王仓(其实中午的时候就时常开始卡了= =)....损失了2h(幸好长一点的都单独开了一篇)....吓得赶紧分成两坨....TAT. ...

  7. USACO Section 1.3 题解 (洛谷OJ P1209 P1444 P3650 P2693)

    usaco ch1.4 sort(d , d + c, [](int a, int b) -> bool { return a > b; }); 生成与过滤 generator&& ...

  8. 【题解】晋升者计数 Promotion Counting [USACO 17 JAN] [P3605]

    [题解]晋升者计数 Promotion Counting [USACO 17 JAN] [P3605] 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训.!牛是可怕的管理者! [题目描 ...

  9. [题解]USACO 1.3 Ski Course Design

    Ski Course Design Farmer John has N hills on his farm (1 <= N <= 1,000), each with an integer ...

  10. [题解]USACO 1.3 Wormholes

    Wormholes Farmer John's hobby of conducting high-energy physics experiments on weekends has backfire ...

随机推荐

  1. 同时开启firewall和iptables

    使用向导 With the iptables service, every single change means flushing all the old rules and reading all ...

  2. Python图像暗水印添加

    推荐使用库:   blind-watermark pip install blind-watermark https://github.com/guofei9987/blind_watermark

  3. NXP i.MX 8M Mini开发板规格书(四核ARM Cortex-A53 + 单核ARM Cortex-M4,主频1.6GHz)

    1 评估板简介 创龙科技TLIMX8-EVM是一款基于NXP i.MX 8M Mini的四核ARM Cortex-A53 + 单核ARM Cortex-M4异构多核处理器设计的高性能评估板,由核心板和 ...

  4. HDFS的特点和目标,不适合场景

     HDFS的特点和目标: HDFS设计优点: (一)高可靠性:Hadoop按位存储和处理数据的能力值得人们信赖; (二)高扩展性:Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可 ...

  5. FLUTTER 中 Isolate 的一个例子.

    isolate 起因 最近看了一点isolate的东西, 自己写了一个例子. 普通的的 consummer-producer例子是只有前后两端的,实际上,会把前后两端再进行包装. 我这里这个例子,是把 ...

  6. 钉钉应用开发-Python操作钉钉文档(excel版)

    钉钉应用开发-Python操作钉钉文档 一: 服务端SDK下载 服务端SDK下载 - 钉钉开放平台 (dingtalk.com) pip3 install alibabacloud_dingtalk ...

  7. MySql 安装详细步骤

    一.官网下载 官网地址:https://dev.mysql.com/downloads/installer/ 二.开始安装 1.点击按装文件开始安装 2.只安装服务端就可以了,一直下一步 3. 4. ...

  8. 开源GTKSystem.Windows.Forms框架让C# winform支持跨平台运行

    目录 一.简介 二.GTKSystem.Windows.Forms框架的优势 三.支持界面皮肤主题定制 四.多种控件支持 五.支持Dock.Anchor.SplitContainer布局缩放 六.支持 ...

  9. mysql 二进制的读取与写入

    插入语句 用binary转换函数可将字符串转为二进制 insert into mytable (id, bin) values(1, binary('abcdef')) 查询语句 用cast进行类型转 ...

  10. AI生成前端组件的价值思考

    想法来源 这个想法来源于我自己的需求,我自己首先就是最精准的目标用户,在这个AI时代,我希望AI可以帮我尽量多地干活. 结合自己的日常独立开发情况,发现花在调前端组件样式上的时间很多,因此思考能不能让 ...