【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标
最近YOLO家族又添新成员:YOLOv10,YOLOv10 提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,还介绍了整体效率-精度驱动的模型设计策略,从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。在本文中,我们将结合OpenVINO C# API 使用最新发布的OpenVINO 2024.1部署YOLOv10 目标检测模型
OpenVINO C# API项目链接:
https://github.com/guojin-yan/OpenVINO-CSharp-API.git
使用 OpenVINO C# API 部署 YOLOv10 全部源码:
https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/yolov10/
1. 前言
1.1 OpenVINO C# API
英特尔发行版 OpenVINO 工具套件基于 oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。通过简化的开发工作流程,OpenVINO 可赋能开发者在现实世界中部署高性能应用程序和算法。
2024年4月25日,英特尔发布了开源 OpenVINO 2024.1 工具包,用于在各种硬件上优化和部署人工智能推理。更新了更多的 Gen AI 覆盖范围和框架集成,以最大限度地减少代码更改。同时提供了更广泛的 LLM 模型支持和更多的模型压缩技术。通过压缩嵌入的额外优化减少了 LLM 编译时间,改进了采用英特尔高级矩阵扩展 (Intel AMX) 的第 4 代和第 5 代英特尔至强处理器上 LLM 的第 1 令牌性能。通过对英特尔锐炫 GPU 的 oneDNN、INT4 和 INT8 支持,实现更好的 LLM 压缩和改进的性能。最后实现了更高的可移植性和性能,可在边缘、云端或本地运行 AI。
OpenVINO C# API 是一个 OpenVINO 的 .Net wrapper,应用最新的 OpenVINO 库开发,通过 OpenVINO C API 实现 .Net 对 OpenVINO Runtime 调用,使用习惯与 OpenVINO C++ API 一致。OpenVINO C# API 由于是基于 OpenVINO 开发,所支持的平台与 OpenVINO 完全一致,具体信息可以参考 OpenVINO。通过使用 OpenVINO C# API,可以在 .NET、.NET Framework等框架下使用 C# 语言实现深度学习模型在指定平台推理加速。
下表为当前发布的 OpenVINO C# API NuGet Package,支持多个目标平台,可以通过NuGet一键安装所有依赖。
Core Managed Libraries
Package | Description | Link |
---|---|---|
OpenVINO.CSharp.API | OpenVINO C# API core libraries | |
OpenVINO.CSharp.API.Extensions | OpenVINO C# API core extensions libraries | |
OpenVINO.CSharp.API.Extensions.OpenCvSharp | OpenVINO C# API core extensions libraries use OpenCvSharp | |
OpenVINO.CSharp.API.Extensions.EmguCV | OpenVINO C# API core extensions libraries use EmguCV |
Native Runtime Libraries
Package | Description | Link |
---|---|---|
OpenVINO.runtime.win | Native bindings for Windows | |
OpenVINO.runtime.ubuntu.22-x86_64 | Native bindings for ubuntu.22-x86_64 | |
OpenVINO.runtime.ubuntu.20-x86_64 | Native bindings for ubuntu.20-x86_64 | |
OpenVINO.runtime.ubuntu.18-x86_64 | Native bindings for ubuntu.18-x86_64 | |
OpenVINO.runtime.debian9-arm64 | Native bindings for debian9-arm64 | |
OpenVINO.runtime.debian9-armhf | Native bindings for debian9-armhf | |
OpenVINO.runtime.centos7-x86_64 | Native bindings for centos7-x86_64 | |
OpenVINO.runtime.rhel8-x86_64 | Native bindings for rhel8-x86_64 | |
OpenVINO.runtime.macos-x86_64 | Native bindings for macos-x86_64 | |
OpenVINO.runtime.macos-arm64 | Native bindings for macos-arm64 |
1.2 YOLOv10
在过去的几年里,由于在计算成本和检测性能之间取得了有效的平衡,YOLOs已经成为实时目标检测领域的主导范式。然而,对非最大抑制(NMS)的后处理依赖阻碍了yolo的端到端部署,并对推理延迟产生不利影响。为了解决这些问题,首先提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,我们还介绍了整体效率-精度驱动的模型设计策略。我们从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。我们的努力成果是用于实时端到端目标检测的新一代YOLO系列,称为YOLOv10。大量的实验表明,YOLOv10在各种模型尺度上都达到了最先进的性能和效率。例如,我们的YOLOv10-S在COCO上类似的AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOPs减少2.8倍。与YOLOv9-C相比,在相同性能下,YOLOv10-B的延迟减少了46%,参数减少了25%。
下图为YOLOv10官方提供的模型训练精度以及不同模型数据量,可以看出YOLOv10与之前其他系列相比,数据量在减少的同时,精度依旧有所提升。
2. 模型获取
2.1 源码下载
YOLOv10 模型需要源码进行下载,首先克隆GitHub上的源码,输入以下指令:
git clone https://github.com/THU-MIG/yolov10.git
cd yolov10
2.2 配置环境
接下来安装模型下载以及转换环境,此处使用Anaconda进行程序集管理,输入以下指令创建一个yolov10环境:
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .
然后安装OpenVINO环境,输入以下指令:
pip install openvino==2024.1.0
2.3 下载模型
首先导出目标识别模型,此处以官方预训练模型为例,首先下载预训练模型文件,然后调用yolo
导出ONBNX格式的模型文件,最后使用 OpenVINO 的模型转换命令将模型转为IR格式,依次输入以下指令即可:
wget https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt
yolo export model=yolov10s.pt format=onnx opset=13 simplify
ovc yolov10s.onnx
模型的结构如下图所示:
3. Yolov10 项目配置
3.1 项目创建与环境配置
在Windows平台开发者可以使用Visual Studio平台开发程序,但无法跨平台实现,为了实现跨平台,此处采用dotnet指令进行项目的创建和配置。
首先使用dotnet创建一个测试项目,在终端中输入一下指令:
dotnet new console --framework net6.0 --use-program-main -o yolov10
此处以Windows平台为例安装项目依赖,首先是安装OpenVINO C# API项目依赖,在命令行中输入以下指令即可:
dotnet add package OpenVINO.CSharp.API
dotnet add package OpenVINO.runtime.win
dotnet add package OpenVINO.CSharp.API.Extensions
dotnet add package OpenVINO.CSharp.API.Extensions.OpenCvSharp
关于在不同平台上搭建 OpenVINO C# API 开发环境请参考以下文章: 《在Windows上搭建OpenVINOC#开发环境》 、《在Linux上搭建OpenVINOC#开发环境》、《在MacOS上搭建OpenVINOC#开发环境》
接下来安装使用到的图像处理库 OpenCvSharp,在命令行中输入以下指令即可:
dotnet add package OpenCvSharp4
dotnet add package OpenCvSharp4.Extensions
dotnet add package OpenCvSharp4.runtime.win
关于在其他平台上搭建 OpenCvSharp 开发环境请参考以下文章:《【OpenCV】在Linux上使用OpenCvSharp》 、《【OpenCV】在MacOS上使用OpenCvSharp》
添加完成项目依赖后,项目的配置文件如下所示:
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net6.0</TargetFramework>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="OpenCvSharp4" Version="4.9.0.20240103" />
<PackageReference Include="OpenCvSharp4.Extensions" Version="4.9.0.20240103" />
<PackageReference Include="OpenCvSharp4.runtime.win" Version="4.9.0.20240103" />
<PackageReference Include="OpenVINO.CSharp.API" Version="2024.0.0.1" />
<PackageReference Include="OpenVINO.CSharp.API.Extensions.OpenCvSharp" Version="1.0.4" />
<PackageReference Include="OpenVINO.runtime.win" Version="2024.0.0.1" />
</ItemGroup>
</Project>
3.2 定义模型预测方法
使用 OpenVINO C# API 部署模型主要包括以下几个步骤:
- 初始化 OpenVINO Runtime Core
- 读取本地模型(将图片数据预处理方式编译到模型)
- 将模型编译到指定设备
- 创建推理通道
- 处理图像输入数据
- 设置推理输入数据
- 模型推理
- 获取推理结果
- 处理结果数据
3.2.1 定义目标检测模型方法
按照 OpenVINO C# API 部署深度学习模型的步骤,编写YOLOv10模型部署流程,在之前的项目里,我们已经部署了YOLOv5~9等一系列模型,其部署流程是基本一致的,YOLOv10模型部署代码如下所示:
static void yolov10_det(string model_path, string image_path, string device)
{
// -------- Step 1. Initialize OpenVINO Runtime Core --------
Core core = new Core();
// -------- Step 2. Read inference model --------
Model model = core.read_model(model_path);
OvExtensions.printf_model_info(model);
// -------- Step 3. Loading a model to the device --------
CompiledModel compiled_model = core.compile_model(model, device);
// -------- Step 4. Create an infer request --------
InferRequest infer_request = compiled_model.create_infer_request();
// -------- Step 5. Process input images --------
Mat image = new Mat(image_path); // Read image by opencvsharp
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
float factor = (float)(max_image_length / 640.0);
// -------- Step 6. Set up input data --------
Tensor input_tensor = infer_request.get_input_tensor();
Shape input_shape = input_tensor.get_shape();
Mat input_mat = CvDnn.BlobFromImage(max_image, 1.0 / 255.0, new OpenCvSharp.Size(input_shape[2], input_shape[3]), 0, true, false);
float[] input_data = new float[input_shape[1] * input_shape[2] * input_shape[3]];
Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);
input_tensor.set_data<float>(input_data);
// -------- Step 7. Do inference synchronously --------
infer_request.infer();
// -------- Step 8. Get infer result data --------
Tensor output_tensor = infer_request.get_output_tensor();
int output_length = (int)output_tensor.get_size();
float[] output_data = output_tensor.get_data<float>(output_length);
// -------- Step 9. Process reault --------
List<Rect> position_boxes = new List<Rect>();
List<int> class_ids = new List<int>();
List<float> confidences = new List<float>();
// Preprocessing output results
for (int i = 0; i < output_data.Length / 6; i++)
{
int s = 6 * i;
if ((float)output_data[s + 4] > 0.5)
{
float cx = output_data[s + 0];
float cy = output_data[s + 1];
float dx = output_data[s + 2];
float dy = output_data[s + 3];
int x = (int)((cx) * factor);
int y = (int)((cy) * factor);
int width = (int)((dx - cx) * factor);
int height = (int)((dy - cy) * factor);
Rect box = new Rect();
box.X = x;
box.Y = y;
box.Width = width;
box.Height = height;
position_boxes.Add(box);
class_ids.Add((int)output_data[s + 5]);
confidences.Add((float)output_data[s + 4]);
}
}
for (int i = 0; i < class_ids.Count; i++)
{
int index = i;
Cv2.Rectangle(image, position_boxes[index], new Scalar(0, 0, 255), 2, LineTypes.Link8);
Cv2.Rectangle(image, new OpenCvSharp.Point(position_boxes[index].TopLeft.X, position_boxes[index].TopLeft.Y + 30),
new OpenCvSharp.Point(position_boxes[index].BottomRight.X, position_boxes[index].TopLeft.Y), new Scalar(0, 255, 255), -1);
Cv2.PutText(image, class_ids[index] + "-" + confidences[index].ToString("0.00"),
new OpenCvSharp.Point(position_boxes[index].X, position_boxes[index].Y + 25),
HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 0), 2);
}
string output_path = Path.Combine(Path.GetDirectoryName(Path.GetFullPath(image_path)),
Path.GetFileNameWithoutExtension(image_path) + "_result.jpg");
Cv2.ImWrite(output_path, image);
Slog.INFO("The result save to " + output_path);
Cv2.ImShow("Result", image);
Cv2.WaitKey(0);
}
3.2.2 使用OpenVINO 预处理接口编译模型
OpenVINO提供了推理数据预处理接口,用户可以更具模型的输入数据预处理方式进行设置。在读取本地模型后,调用数据预处理接口,按照模型要求的数据预处理方式进行输入配置,然后再将配置好的预处理接口与模型编译到一起,这样便实现了将模型预处理与模型结合在一起,实现OpenVINO对于处理过程的加速。主要是现在代码如下所示:
static void yolov10_det_process(string model_path, string image_path, string device)
{
// -------- Step 1. Initialize OpenVINO Runtime Core --------
Core core = new Core();
// -------- Step 2. Read inference model --------
Model model = core.read_model(model_path);
OvExtensions.printf_model_info(model);
PrePostProcessor processor = new PrePostProcessor(model);
Tensor input_tensor_pro = new Tensor(new OvType(ElementType.U8), new Shape(1, 640, 640, 3));
InputInfo input_info = processor.input(0);
InputTensorInfo input_tensor_info = input_info.tensor();
input_tensor_info.set_from(input_tensor_pro).set_layout(new Layout("NHWC")).set_color_format(ColorFormat.BGR);
PreProcessSteps process_steps = input_info.preprocess();
process_steps.convert_color(ColorFormat.RGB).resize(ResizeAlgorithm.RESIZE_LINEAR)
.convert_element_type(new OvType(ElementType.F32)).scale(255.0f).convert_layout(new Layout("NCHW"));
Model new_model = processor.build();
// -------- Step 3. Loading a model to the device --------
CompiledModel compiled_model = core.compile_model(new_model, device);
// -------- Step 4. Create an infer request --------
InferRequest infer_request = compiled_model.create_infer_request();
// -------- Step 5. Process input images --------
Mat image = new Mat(image_path); // Read image by opencvsharp
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
Cv2.Resize(max_image, max_image, new OpenCvSharp.Size(640, 640));
float factor = (float)(max_image_length / 640.0);
// -------- Step 6. Set up input data --------
Tensor input_tensor = infer_request.get_input_tensor();
Shape input_shape = input_tensor.get_shape();
byte[] input_data = new byte[input_shape[1] * input_shape[2] * input_shape[3]];
//max_image.GetArray<int>(out input_data);
Marshal.Copy(max_image.Ptr(0), input_data, 0, input_data.Length);
IntPtr destination = input_tensor.data();
Marshal.Copy(input_data, 0, destination, input_data.Length);
// -------- Step 7. Do inference synchronously --------
... ...(后续与上文代码一致)
}
3.2 模型预测方法调用
定义完模型推理接口后,便可以在主函数里进行调用。此处为了让大家更好的复现本文代码,提供了在线模型,用户只需要运行以下代码,便可以直接下载转换好的模型进行模型推理,无需再自行转换,主函数代码如下所示:
static void Main(string[] args)
{
string model_path = "";
string image_path = "";
string device = "AUTO";
if (args.Length == 0)
{
if (!Directory.Exists("./model"))
{
Directory.CreateDirectory("./model");
}
if (!File.Exists("./model/yolov10s.bin") && !File.Exists("./model/yolov10s.bin"))
{
if (!File.Exists("./model/yolov10s.tar"))
{
_ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Model/yolov10s.tar",
"./model/yolov10s.tar").Result;
}
Download.unzip("./model/yolov10s.tar", "./model/");
}
if (!File.Exists("./model/test_image.jpg"))
{
_ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Image/test_det_02.jpg",
"./model/test_image.jpg").Result;
}
model_path = "./model/yolov10s.xml";
image_path = "./model/test_image.jpg";
}
else if (args.Length >= 2)
{
model_path = args[0];
image_path = args[1];
device = args[2];
}
else
{
Console.WriteLine("Please enter the correct command parameters, for example:");
Console.WriteLine("> 1. dotnet run");
Console.WriteLine("> 2. dotnet run <model path> <image path> <device name>");
}
// -------- Get OpenVINO runtime version --------
OpenVinoSharp.Version version = Ov.get_openvino_version();
Slog.INFO("---- OpenVINO INFO----");
Slog.INFO("Description : " + version.description);
Slog.INFO("Build number: " + version.buildNumber);
Slog.INFO("Predict model files: " + model_path);
Slog.INFO("Predict image files: " + image_path);
Slog.INFO("Inference device: " + device);
Slog.INFO("Start yolov8 model inference.");
//yolov10_det(model_path, image_path, device);
yolov10_det_process(model_path, image_path, device);
}
代码提示:
由于篇幅限制,上文中只展示了部分代码,想要获取全部源码,请访问项目GitHub自行下载:
使用OpenVINO C# API部署YOLOv10目标检测模型:
https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/yolov10/yolov10_det_opencvsharp/Program.cs
此外为了满足习惯使用EmguCV处理图像数据的开发者,此处我们也提供了EmguCV版本代码:、
使用OpenVINO C# API部署YOLOv10目标检测模型:
https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/yolov10/yolov10_det_emgucv/Program.cs
4. 项目运行与演示
4.1 项目编译和运行
接下来输入项目编译指令进行项目编译,输入以下指令即可:
dotnet build
接下来运行编译后的程序文件,在CMD中输入以下指令,运行编译后的项目文件:
dotnet run --no-build
运行后项目输出为:
4.2 YOLOv10 目标检测模型运行结果
下图为YOLOv10 目标检测模型运行输出信息,此处我们使用在线转换好的模型进行推理。,首先会下载指定模型以及推理数据到本地,这样避免了开发者在自己配置环境和下载模型;接下来是输出打印 OpenVINO 版本信息,此处我们使用NuGet安装的依赖项,已经是OpenVINO 2024.0最新版本;接下来就是打印相关的模型信息,并输出每个过程所消耗时间。
下图为使用YOLOv10 目标检测模型推理结果:
5. 总结
在该项目中,我们结合之前开发的 OpenVINO C# API 项目部署YOLOv10模型,成功实现了对象目标检测与实例分割,并且根据不同开发者的使用习惯,同时提供了OpenCvSharp以及Emgu.CV两种版本,供各位开发者使用。最后如果各位开发者在使用中有任何问题,欢迎大家与我联系。
【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标的更多相关文章
- “独立”OpenVINO R2019_2 版本中的“super_resolution_demo”例子的,解决由于 R2019_1到R2019_2 升级造成的问题
OpenVINO提供了丰富的例子,为了方便研究和使用,我们需要将这些例子由原始的demo目录中分离出来,也就是“独立”运行,这里我们选择了较为简单的super_resolution_demo来说明问题 ...
- Sharepoint中出现webpart部署之后却找不到的一种情况
今天遇到了一个很奇怪的问题,明明代码没有任何问题,部署之后却没有找到添加的webpart,在(web Parts)Galleries中也找不到,最后才发现可能是和服务器的运行速度有关,就像之前遇到的问 ...
- 在 Visual Studio 2010 中开发和部署 Windows Azure 应用程序
原文 在 Visual Studio 2010 中开发和部署 Windows Azure 应用程序 在 Visual Studio 2010 中开发和部署 Windows Azure 应用程序 Jim ...
- python-pycharm中使用anaconda部署python环境
pycharm中使用anaconda部署python环境 今天来说一下python中一个管理包很好用的工具anaconda,可以轻松实现python中各种包的管理.相信大家都会有这种体验,在pycha ...
- IDEA中Tomcat热部署不生效问题解决办法
IDEA中Tomcat热部署不生效问题解决办法 1.设置完热部署后 2.一定要在Debug模式下运行不要点RUN!!!!!!!!!!!!!!!!!
- SpringBoot 在IDEA中实现热部署(实用版)(引入)
SpringBoot 在IDEA中实现热部署(实用版) 引用:https://www.jianshu.com/p/f658fed35786 好的热部署让开发调试事半功倍,这样的“神技能”怎么能错过呢, ...
- 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...
- idea中springboot热部署(无需重启项目)
idea中springboot热部署(无需重启项目) 1.在pom.xml文件中导入依赖 <dependency> <groupId>org.springframework.b ...
- NLP(十七)利用tensorflow-serving部署kashgari模型
在文章NLP(十五)让模型来告诉你文本中的时间中,我们已经学会了如何利用kashgari模块来完成序列标注模型的训练与预测,在本文中,我们将会了解如何tensorflow-serving来部署模型 ...
- 使用C++调用并部署pytorch模型
1.背景(Background) 上图显示了目前深度学习模型在生产环境中的方法,本文仅探讨如何部署pytorch模型! 至于为什么要用C++调用pytorch模型,其目的在于:使用C++及多线程可以加 ...
随机推荐
- Linux0.12内核源码解读(2)-Bootsect.S
大家好,我是呼噜噜,在上一篇文章聊聊x86计算机启动发生的事?我们了解了x86计算机启动过程,MBR.0x7c00是什么?其中当bios引导结束后,操作系统接过计算机的控制权后,发生了哪些事?本文将揭 ...
- Blocks(单调栈)
题干中说每次选择一个大于k的数,还要选他左右两个数其中之一加上一,最后问你最长的每个数不小于K的子序列. 这些都是障眼法,其实就是问你最长的平均值大于或等于K的最长子序列,这样就明朗了. 接下来就是找 ...
- 重新整理.net core 计1400篇[九] (.net core 中的依赖注入的服务注入)
前言 在该系列六中介绍了一个简单的依赖注入,该节介绍.net core 中的依赖注入的服务注入. ServiceDescriptor ServiceDescriptor 是服务描述的意思,这个是做什么 ...
- 深度解读《深度探索C++对象模型》之C++虚函数实现分析(一)
接下来我将持续更新"深度解读<深度探索C++对象模型>"系列,敬请期待,欢迎关注!也可以关注公众号:iShare爱分享,自动获得推文和全部的文章列表. 假如有这样的一段 ...
- EMAS移动测试-远程真机篇
简介: 导读:本文将介绍申请远程真机以及在远程真机上执行测试任务的详细操作,包括申请远程真机.安装应用.扫码.定位.性能测试等. 一.移动测试概览 移动测试服务(Mobile Testing)是为企业 ...
- PolarDB-X 2.1 新版本发布 让“MySQL 原生分布式”触手可及
简介: PolarDB-X 2.1 是 PolarDB-X 非常重要的版本,也是第一次 PolarDB-X 分布式数据库的产品可以作为企业级的分布式数据库真正部署到客户的生产环境使用. PolarDB ...
- 3月2日,阿里云开源 PolarDB 企业级架构将迎来重磅发布
简介:2022年3月2日,开源 PolarDB 企业级架构将迎来重磅发布!本次发布会将首次公开开源 PolarDB 的总体结构设计和企业级特性,对 PolarDB for PostgreSQL 的存储 ...
- 配置审计(Config)变配报警设置
简介: 本文作者[紫极zj],本篇将主要介绍通过配置审计的自定义规则等服务,对负载均衡进行预警行为的相关介绍. 前言 配置审计(Config)将您分散在各地域的资源整合为全局资源列表,可便捷地搜索全局 ...
- 如何使用 Kubernetes 监测定位慢调用
简介:本次课程主要分为三大部分,首先将介绍慢调用的危害以及常见的原因:其次介绍慢调用的分析方法以及最佳实践:最后将通过几个案例来去演示一下慢调用的分析过程. 作者:李煌东 大家好,我是阿里云的李煌东 ...
- GRPC: 如何优雅关闭进程(graceful shutdown)
简介: 本文将介绍优雅关闭 gRPC 微服务.在进程收到关闭信号时,我们需要关闭后台运行的逻辑,比如,MySQL 连接等等. 介绍 本文将介绍优雅关闭 gRPC 微服务. 什么是优雅关闭? 在进程收 ...