题目

给定一个 \(n\) 个点,\(m\) 条边的简单无向连通图,

问是否能将边分成三部分,使每部分都能成为环


分析

每个点的度数都得为偶数,这不由得想到了欧拉回路。

如果整张图是一个简单环那么一定无解。

如果存在一个点的度数大于等于 6,也就是通过这个点可以产生至少 3 个环。

那么剩下讨论点的度数为 4 的情况,如果只有一个度数为 4 的点显然无解。

如果个数超过 2,那么一定可以拆成 3 个环。

剩下就是个数正好为 2 的情况,如果度数为 4 的两个点本身有两个环就可以拆成 3 个环。

否则只剩下这两个点连接四条链的情况,一定无解。

可以先割掉两个度数为 4 的点判断每个点是否能只与其中一点连通


代码

#include <cstdio>
#include <cctype>
using namespace std;
const int N=100011;
struct node{int y,next;}e[N<<1];
int v[N],as[N],n,m,deg[N],four,fi,se,et=1;
int iut(){
int ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
void dfs(int x){
v[x]=1;
for (int i=as[x];i;i=e[i].next)
if (v[e[i].y]==-1) se=fi,fi=e[i].y;
else if (!v[e[i].y]) dfs(e[i].y);
}
int main(){
n=iut(),m=iut();
for (int i=1;i<=m;++i){
int x=iut(),y=iut();
e[++et]=(node){y,as[x]},as[x]=et,++deg[x];
e[++et]=(node){x,as[y]},as[y]=et,++deg[y];
}
for (int i=1;i<=n;++i)
if (deg[i]&1) return !puts("No");
for (int i=1;i<=n;++i)
if (deg[i]>=6) return !puts("Yes");
for (int i=1;i<=n;++i)
if (deg[i]>=4) se=fi,fi=i,++four;
if (four!=2) return !puts(four<2?"No":"Yes");
v[fi]=v[se]=-1;
for (int i=1;i<=n;++i)
if (!v[i]){
fi=se=0,dfs(i);
if (fi==se) return !puts("Yes");
}
return !puts("No");
}

#欧拉回路#AT4518 [AGC032C] Three Circuits的更多相关文章

  1. [Atcoder AGC032C]Three Circuits

    题目大意:有一张$n$个点$m$条边的无向连通图,判断是否可以从中分出$3$个环,满足三个环覆盖整张图并且没有重复的边.$n,m\leqslant10^5$ 题解:分类讨论.有度数为奇肯定不行,因为连 ...

  2. AT4518-[AGC032C]Three Circuits【欧拉回路】

    正题 题目链接:https://www.luogu.com.cn/problem/AT4518 题目大意 给出\(n\)个点\(m\)条边的一张简单无向联通图,求能否把它分成三个可重复点的环. \(1 ...

  3. ACM/ICPC 之 混合图的欧拉回路判定-网络流(POJ1637)

    //网络流判定混合图欧拉回路 //通过网络流使得各点的出入度相同则possible,否则impossible //残留网络的权值为可改变方向的次数,即n个双向边则有n次 //Time:157Ms Me ...

  4. [poj2337]求字典序最小欧拉回路

    注意:找出一条欧拉回路,与判定这个图能不能一笔联通...是不同的概念 c++奇怪的编译规则...生不如死啊... string怎么用啊...cincout来救? 可以直接.length()我也是长见识 ...

  5. ACM: FZU 2112 Tickets - 欧拉回路 - 并查集

     FZU 2112 Tickets Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u P ...

  6. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  7. POJ 1637 混合图的欧拉回路判定

    题意:一张混合图,判断是否存在欧拉回路. 分析参考: 混合图(既有有向边又有无向边的图)中欧拉环.欧拉路径的判定需要借助网络流! (1)欧拉环的判定:一开始当然是判断原图的基图是否连通,若不连通则一定 ...

  8. codeforces 723E (欧拉回路)

    Problem One-Way Reform 题目大意 给一张n个点,m条边的无向图,要求给每条边定一个方向,使得最多的点入度等于出度,要求输出方案. 解题分析 最多点的数量就是入度为偶数的点. 将入 ...

  9. UVa 12118 检查员的难题(dfs+欧拉回路)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  10. UVA 10054 (欧拉回路) The Necklace

    题目:这里 题意:有一种由彩色珠子连接而成的项链,每个珠子两半由不同颜色(由1到50的数字表示颜色)组成,相邻的两个珠子在接触的地方颜色相同,现在有一些零碎的珠子,确认它是否能 复原成完整的项链. 把 ...

随机推荐

  1. linux下安装nginx(yum源安装)

    备份yum源 cd /etc/yum.repos.d mkdir repo_bak mv *.repo repo_bak/ 下载阿里云repo文件 wget -O /etc/yum.repos.d/C ...

  2. day02---虚拟机上网模式

    修改虚拟网络编辑器 虚拟软件网络模式介绍 NAT网络模式 特点:虚拟主机和宿主机网络信息 可以不一致 优点:不容易出现局域网中IP地址冲突 缺点:其它宿主机不能直接访问虚拟机 桥接网络模式 特点:虚拟 ...

  3. 03-Redis系列之-高级用法详解

    慢查询 生命周期 我们配置一个时间,如果查询时间超过了我们设置的时间,我们就认为这是一个慢查询. 慢查询发生在第三阶段 客户端超时不一定慢查询,但慢查询是客户端超时的一个可能因素 两个配置 slowl ...

  4. 【LeetCode二叉树#07】左叶子节点之和(基于栈的迭代法前中后序遍历复习)

    左叶子节点之和 力扣题目链接(opens new window) 计算给定二叉树的所有左叶子之和. 示例: 思路 注意审题,这里是要求 左叶子节点 之和 不是二叉树中的左侧节点之和,因此使用层序遍历是 ...

  5. 【Java复健指南02】方法的注意事项

    [方法] 方法基本内容 √访问修饰符 ​ (作用是控制方法使用的范围) ​ 可选,[有四种:public\protected\默认\private],具体在后面说 √返回类型 ​ 1.一个方法最多有一 ...

  6. PRINCE2系列一基于项目情境自定义解决方案

    PRINCE2(PRojects IN Controlled Environments,受控环境下的项目管理) 对项目进行了如下定义:项目是按照一个被批准的商业论证,为了交付一个或多个商业产品而创建的 ...

  7. BeanShell 如何加密加签?

    一 首先我们要搞清楚接口签名步骤: **第一步:初步实现接口****第二步:找开发拿到算法和key** * key:sAHDRNJg0ZevmEn7HwBfbw== * 算法:HmacMD5 咱们就找 ...

  8. ASP.NET Core 移除已注册的过滤器

    背景 ABP vNext 默认对异常响应进行了处理,现在某个项目需要自定义异常响应结果. 问题 在 ABP vNext 的 MVC 模块当中,可以看到是通过 AddService(typeof(Abp ...

  9. Lock wait timeout exceeded; try restarting transaction-Mysql报错

    一.问题由来 现在在做一个小程序的后台,使用Java写的,数据库使用的Mysql,之前一直调试的时候都好好的,今天在调试的时候突然就报一个错: ### Error updating database. ...

  10. iview 部分表单验证

    引用:https://github.com/ElemeFE/element/issues/3686 zxmantou commented on 25 Feb 2019 @Murraya-panicul ...