Optimal Milking
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 15749   Accepted: 5617
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking
machine so that the distance the furthest-walking cow travels is
minimized (and, of course, the milking machines are not overutilized).
At least one legal assignment is possible for all input data sets. Cows
can traverse several paths on the way to their milking machine.

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated
integers describes the distances between pairs of various entities. The
input forms a symmetric matrix. Line 2 tells the distances from milking
machine 1 to each of the other entities; line 3 tells the distances
from machine 2 to each of the other entities, and so on. Distances of
entities directly connected by a path are positive integers no larger
than 200. Entities not directly connected by a path have a distance of
0. The distance from an entity to itself (i.e., all numbers on the
diagonal) is also given as 0. To keep the input lines of reasonable
length, when K+C > 15, a row is broken into successive lines of 15
numbers and a potentially shorter line to finish up a row. Each new row
begins on its own line.

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

题意:有K台挤奶机,C头奶牛,每台挤奶机可以容纳M头奶牛,挤奶机和奶牛两两之间都有个距离,现在问在保证所有的奶牛都可以产奶的情况下,走到挤奶机需要走最远的奶牛的最短要走的距离是多少?
题解:先用floyed算法算出每头奶牛和挤奶机之间的最短路径,在保证所有奶牛都能够产奶的情况下二分求解,设立超级源点S,S向每台挤奶机之间连容量为M的边,每台挤奶机向奶牛连容量为1的边,所有奶牛
向超级汇点连容量为1的边,求解最大流。
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <string.h>
#include <math.h>
#include <iostream>
#include <math.h>
using namespace std;
const int N = ;
const int INF = ;
struct Edge
{
int v,next;
int w;
} edge[N*N];
int head[N];
int level[N];
int tot;
void init()
{
memset(head,-,sizeof(head));
tot=;
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
edge[k].v = u,edge[k].w=,edge[k].next=head[v],head[v]=k++;
}
int BFS(int src,int des)
{
queue<int >q;
memset(level,,sizeof(level));
level[src]=;
q.push(src);
while(!q.empty())
{
int u = q.front();
q.pop();
if(u==des) return ;
for(int k = head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==&&w!=)
{
level[v]=level[u]+;
q.push(v);
}
}
}
return -;
}
int dfs(int u,int des,int increaseRoad)
{
if(u==des||increaseRoad==) return increaseRoad;
int ret=;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v,w=edge[k].w;
if(level[v]==level[u]+&&w!=)
{
int MIN = min(increaseRoad-ret,w);
w = dfs(v,des,MIN);
if(w > )
{
edge[k].w -=w;
edge[k^].w+=w;
ret+=w;
if(ret==increaseRoad) return ret;
}
else level[v] = -;
if(increaseRoad==) break;
}
}
if(ret==) level[u]=-;
return ret;
}
int Dinic(int src,int des)
{
int ans = ;
while(BFS(src,des)!=-) ans+=dfs(src,des,INF);
return ans;
}
int graph[N][N];
int k,c,m;
int floyed(int n)
{
int MAX=-;
for(int k=; k<=n; k++)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
graph[i][j] = min(graph[i][j],graph[i][k]+graph[k][j]);
}
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(graph[i][j]!=INF)
MAX = max(MAX,graph[i][j]);
}
}
return MAX;
}
int build(int v){
init();
int src = ,des = k+c+;
for(int i=;i<=k;i++) addEdge(src,i,m,tot);
for(int i=k+;i<=k+c;i++) addEdge(i,des,,tot);
for(int i=;i<=k;i++){
for(int j=k+;j<=k+c;j++){
if(graph[i][j]<=v) addEdge(i,j,,tot);
}
}
return Dinic(src,des);
}
int main()
{
while(scanf("%d%d%d",&k,&c,&m)!=EOF)
{
for(int i=;i<=k+c;i++){
for(int j=;j<=k+c;j++){
scanf("%d",&graph[i][j]);
if(graph[i][j]==&&i!=j) graph[i][j] = INF;
}
}
int MAX = floyed(k+c);
int l=,r = MAX;
int ans = MAX;
while(l<=r){
int mid = (l+r)>>;
if(build(mid)==c) {
ans = mid;
r = mid-;
}
else l =mid+;
}
printf("%d\n",ans);
}
}

poj 2112(二分+网络流)的更多相关文章

  1. poj 2112(二分+多重匹配)

    题目链接:http://poj.org/problem?id=2112 思路:由于要求奶牛走的最远距离的最短路程,显然我们可以二分距离,如果奶牛与挤奶器的距离小于等于limit的情况下,能够满足,则在 ...

  2. POJ 2112 二分+最大流

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 17297   Accepted: 6203 ...

  3. POJ 2455 二分+网络流

    题意: 思路: 莫名其妙TLE 啊woc我A了一坨题的网络流模板有问题 !!!! 在常数上会慢 (一个等于号 啊啊啊) 改了所有网络流有关的文章- .... //By SiriusRen #inclu ...

  4. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  5. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  6. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  7. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  8. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  9. POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9658   Accepted: ...

随机推荐

  1. 【线段树 扫描线 二维数点】loj#6276. 果树

    路径计数转成二维数点很妙啊 题目描述 NiroBC 姐姐是个活泼的少女,她十分喜欢爬树,而她家门口正好有一棵果树,正好满足了她爬树的需求. 这颗果树有 $N$ 个节点,标号 $1 \ldots N$ ...

  2. Python基础学习总结__Day4

    一.装饰器 前戏: 1.函数即变量 (1)函数名为‘门牌号’即内存地址,加括号开始调用 (2)没有变量调用将清空内存 (3)匿名函数(lambda函数):没有‘门牌号’,需要赋值给变量,否则将会被清空 ...

  3. Developing for nRF52810(转载)

    Table of Contents Introduction Hardware emulation of nRF52810 Limitations Software emulation of nRF5 ...

  4. CodeForces - 948C Producing Snow(优先队列)

    题意: n天. 每天你会堆一堆雪,体积为 v[i].每天都有一个温度 t[i] 所有之前堆过的雪在第 i 天体积都会减少 t[i] . 输出每天融化了的雪的体积. 这个题的正解我怎么想都很难理解,但是 ...

  5. HBase0.94.2-cdh4.2.0需求评估测试报告1.0之四

    第二组:文件存储读过程记录 第一组:一个列,四个分区,随机ID 测试列和分区 测试程序或命令 导入文件大小(Mb) 导入文件个数(个) 是否触发flush事件(布尔) 是否触发compact事件(布尔 ...

  6. ThreeJs 基础入门

    本文来自网易云社区 作者:唐钊 Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它在 web 中创建各种三维场景,包括了摄影机.光影.材质等各种对象.使用它可以让我们更加直观的了解 we ...

  7. [POJ 1001] Exponentiation C++解题报告 JAVA解题报告

        Exponentiation Time Limit: 500MS   Memory Limit: 10000K Total Submissions: 126980   Accepted: 30 ...

  8. VMware RHEL6.3 开启网络连接

    确认/etc/sysconfig/network是否存在,如果不存在,service network 命令使用不了.新建: NETWORKING=yes HOSTNAME=RHEL6. GATEWAY ...

  9. hdu6103[尺取法] 2017多校6

    /*hdu6103[尺取法] 2017多校6*/ #include <bits/stdc++.h> using namespace std; int T, m; ]; void solve ...

  10. 关于iOS 7的几个开源项目

    MBSwitch   MBSwitch是一个体现了iOS 7扁平化设计风格的UISwitch,支持iOS 7以下系统.允许使用者进行颜色的深度自定义,你可以定义边框的颜色,开/关的颜色以及按钮的颜色. ...