poj 2112(二分+网络流)
Time Limit: 2000MS | Memory Limit: 30000K | |
Total Submissions: 15749 | Accepted: 5617 | |
Case Time Limit: 1000MS |
Description
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking
machine so that the distance the furthest-walking cow travels is
minimized (and, of course, the milking machines are not overutilized).
At least one legal assignment is possible for all input data sets. Cows
can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated
integers describes the distances between pairs of various entities. The
input forms a symmetric matrix. Line 2 tells the distances from milking
machine 1 to each of the other entities; line 3 tells the distances
from machine 2 to each of the other entities, and so on. Distances of
entities directly connected by a path are positive integers no larger
than 200. Entities not directly connected by a path have a distance of
0. The distance from an entity to itself (i.e., all numbers on the
diagonal) is also given as 0. To keep the input lines of reasonable
length, when K+C > 15, a row is broken into successive lines of 15
numbers and a potentially shorter line to finish up a row. Each new row
begins on its own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
题意:有K台挤奶机,C头奶牛,每台挤奶机可以容纳M头奶牛,挤奶机和奶牛两两之间都有个距离,现在问在保证所有的奶牛都可以产奶的情况下,走到挤奶机需要走最远的奶牛的最短要走的距离是多少?
题解:先用floyed算法算出每头奶牛和挤奶机之间的最短路径,在保证所有奶牛都能够产奶的情况下二分求解,设立超级源点S,S向每台挤奶机之间连容量为M的边,每台挤奶机向奶牛连容量为1的边,所有奶牛
向超级汇点连容量为1的边,求解最大流。
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <string.h>
#include <math.h>
#include <iostream>
#include <math.h>
using namespace std;
const int N = ;
const int INF = ;
struct Edge
{
int v,next;
int w;
} edge[N*N];
int head[N];
int level[N];
int tot;
void init()
{
memset(head,-,sizeof(head));
tot=;
}
void addEdge(int u,int v,int w,int &k)
{
edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++;
edge[k].v = u,edge[k].w=,edge[k].next=head[v],head[v]=k++;
}
int BFS(int src,int des)
{
queue<int >q;
memset(level,,sizeof(level));
level[src]=;
q.push(src);
while(!q.empty())
{
int u = q.front();
q.pop();
if(u==des) return ;
for(int k = head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v;
int w = edge[k].w;
if(level[v]==&&w!=)
{
level[v]=level[u]+;
q.push(v);
}
}
}
return -;
}
int dfs(int u,int des,int increaseRoad)
{
if(u==des||increaseRoad==) return increaseRoad;
int ret=;
for(int k=head[u]; k!=-; k=edge[k].next)
{
int v = edge[k].v,w=edge[k].w;
if(level[v]==level[u]+&&w!=)
{
int MIN = min(increaseRoad-ret,w);
w = dfs(v,des,MIN);
if(w > )
{
edge[k].w -=w;
edge[k^].w+=w;
ret+=w;
if(ret==increaseRoad) return ret;
}
else level[v] = -;
if(increaseRoad==) break;
}
}
if(ret==) level[u]=-;
return ret;
}
int Dinic(int src,int des)
{
int ans = ;
while(BFS(src,des)!=-) ans+=dfs(src,des,INF);
return ans;
}
int graph[N][N];
int k,c,m;
int floyed(int n)
{
int MAX=-;
for(int k=; k<=n; k++)
{
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
graph[i][j] = min(graph[i][j],graph[i][k]+graph[k][j]);
}
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(graph[i][j]!=INF)
MAX = max(MAX,graph[i][j]);
}
}
return MAX;
}
int build(int v){
init();
int src = ,des = k+c+;
for(int i=;i<=k;i++) addEdge(src,i,m,tot);
for(int i=k+;i<=k+c;i++) addEdge(i,des,,tot);
for(int i=;i<=k;i++){
for(int j=k+;j<=k+c;j++){
if(graph[i][j]<=v) addEdge(i,j,,tot);
}
}
return Dinic(src,des);
}
int main()
{
while(scanf("%d%d%d",&k,&c,&m)!=EOF)
{
for(int i=;i<=k+c;i++){
for(int j=;j<=k+c;j++){
scanf("%d",&graph[i][j]);
if(graph[i][j]==&&i!=j) graph[i][j] = INF;
}
}
int MAX = floyed(k+c);
int l=,r = MAX;
int ans = MAX;
while(l<=r){
int mid = (l+r)>>;
if(build(mid)==c) {
ans = mid;
r = mid-;
}
else l =mid+;
}
printf("%d\n",ans);
}
}
poj 2112(二分+网络流)的更多相关文章
- poj 2112(二分+多重匹配)
题目链接:http://poj.org/problem?id=2112 思路:由于要求奶牛走的最远距离的最短路程,显然我们可以二分距离,如果奶牛与挤奶器的距离小于等于limit的情况下,能够满足,则在 ...
- POJ 2112 二分+最大流
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 17297 Accepted: 6203 ...
- POJ 2455 二分+网络流
题意: 思路: 莫名其妙TLE 啊woc我A了一坨题的网络流模板有问题 !!!! 在常数上会慢 (一个等于号 啊啊啊) 改了所有网络流有关的文章- .... //By SiriusRen #inclu ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- POJ 2112 Optimal Milking (二分 + 最大流)
题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...
- POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Optimal Milking Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Sub ...
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)
Secret Milking Machine Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9658 Accepted: ...
随机推荐
- linux三剑客正则表达式
^:以...开头,^d,意思是以d开头.例如:ls -F(-p) | grep " ^d " $:以...结尾,/$,意思是以/结尾.例如:ls -F(-p) | grep &q ...
- vue 使用lib-flexable,px2rem 进行移动端适配 但是引入的第三方UI组件 vux 的样式缩小,解决方案
最近在写移动端项目,就想用lib-flexable,px2rem来进行适配,把px转换成rem但是也用到了第三方UI组件库vux,把这个引入发现一个问题就是vux的组件都缩小了,在网上找不到答案,最后 ...
- percpu之静态变量
参考:Linux内核同步机制之(二):Per-CPU变量 CPU私有变量(per-CPU变量) 动态PCPU变量 setup_per_cpu_areas()初始化per-cpu数据. static v ...
- hihocoder1174 拓扑排序1
#1174 : 拓扑排序·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 由于今天上课的老师讲的特别无聊,小Hi和小Ho偷偷地聊了起来. 小Ho:小Hi,你这学期有选 ...
- python基础学习笔记——类的成员
一. 细分类的组成成员 之前咱们讲过类大致分两块区域,如下图所示: 每个区域详细划分又可以分为: class A: company_name = '老男孩教育' # 静态变量(静态字段) __ipho ...
- base64转图片
y一个简单的工具类,附上: /** * @param imgStr 图片的base64 * @param path 将要生成的地址 * @return */ public static boolean ...
- AutoEncoder and DenoiseAutoEncoder
AutoEncoder and DenoiseAutoEncoder 第一部分 首先我们将实现一个如上图结构的最简单的AutoEncoder. 加载数据 在这里,我们使用MNIST手写数据集来进行实验 ...
- Springmvc web项目初始化
Web容器首先会读取项目中的web.xml配置文件中的两个节点:<context-param>与<listener> Web容器创建ServletContext对象即Servl ...
- 读《深入浅出Mysql》第二版,笔记
买了本书,同时网上找了电子版 (My)SQL入门 DDL(Data Definition Languages) ||DESCRIBE tablename; DML(Data manipulation ...
- iOS----精品开源库-开发强力助攻
30个精品iOS开源库,超强助攻 你不会想错过他们,真的. 我爱开源. 文章的尾部你会看到一个太长不看的版本——一个简单的列表,只有标题和到项目的链接.如果你发现这篇文章是有用的,把它和你的iOS开 ...