题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456

首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况;

而不连通的情况就是那个经典做法:选定一个划分点,枚举包含它的连通块,连通块以外的部分随便连(但不和连通块连通),合起来就是不连通的方案数;

设 \( f[i] \) 表示一共 \( i \) 个点时的连通方案数,\( g[i] \) 表示 \( i \) 个点随便连的方案数,即 \( g[i] = 2^{C_{i}^{2}} \),则:

\( f[i] = 2^{C_{i}^{2}} - \sum\limits_{j=1}^{i-1} C_{i-1}^{j-1} * f_{j} * g_{i-j} \)

只要令 \( g[0] = 0 \),\( j \) 就可以枚举到 \( i \);

把 \( C_{i-1}^{j-1} \) 拆开,对应分配到各处,得到:

\( f[i] = 2^{C_{i}^{2}} - (i-1)!*\sum\limits_{j=1}^{i}\frac{f_{j}}{(j-1)!} * \frac{g_{i-j}}{(i-j)!} \)

所以把 \( g[i] \) 的定义改成 \( g[i] = \frac{2^{C_{i}^{2}}}{i!} \)

于是 \( f[i] = 2^{C_{i}^{2}} - (i-1)!*\sum\limits_{j=1}^{i}\frac{f_{j}}{(j-1)!} * g_{i-j} \)

然后就可以分治FFT了;

很容易写错的地方是那个 \( 2^{C_{i}^{2}} \),因为是指数,所以应该对 \( mod-1 \) 取模,而不是 \( mod \) !!

而且除以 \( 2 \) 也不能预处理 \( inv2 \) 了,因为 \( mod-1 \) 不是质数!!

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=;
int n,f[xn],g[xn],jc[xn],jcn[xn],a[xn],b[xn],rev[xn],inv2,in[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b,int p=mod)
{
ll ret=;
for(;b;b>>=,a=(a*a)%p)if(b&)ret=(ret*a)%p;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
int C(int x){return ((ll)x*(x-)/)%(mod-);}//mod-1!!! //not inv2 -- !pri
void init()
{
jc[]=;
for(int i=;i<=n;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[n]=pw(jc[n],mod-);
for(int i=n-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
g[]=;
for(int i=;i<=n;i++)g[i]=(ll)pw(,C(i))*jcn[i]%mod;
}
void ntt(int *a,int tp,int lim)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int len=(mid<<),wn=pw(,tp==?(mod-)/len:(mod-)-(mod-)/len);
for(int j=;j<lim;j+=len)
for(int k=,w=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
void work(int l,int r)
{
if(l==r){f[l]=upt((ll)pw(,C(l))-(ll)jc[l-]*f[l]%mod); return;}
int len=r-l+,mid=((l+r)>>);
work(l,mid);
int lim=,L=;
while(lim<=len)lim<<=,L++;//
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(L-)));
for(int i=;i<lim;i++)a[i]=b[i]=;
for(int i=l;i<=mid;i++)a[i-l]=(ll)f[i]*jcn[i-]%mod;//jcn!!
for(int i=;i<=r-l;i++)b[i]=g[i];//
ntt(a,,lim); ntt(b,,lim);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*b[i]%mod;
ntt(a,-,lim);
for(int i=mid+;i<=r;i++)f[i]=upt(f[i]+a[i-l]);
work(mid+,r);
}
int main()
{
n=rd(); init();
work(,n);
printf("%d\n",f[n]);
return ;
}

分治FFT

也可以用多项式求逆做:

设 \( g[i] = 2^{C_{i}^{2}} \),这里 \( g[0] = 1 \),\( f[i] \) 定义同上;

得到 \( g[n] = \sum\limits_{i=1}^{n} C_{n-1}^{i-1} * f[i] * g[n-i] \)

拆 \( C_{n-1}^{i-1} \),得到

\( \frac{g[n]}{(n-1)!} = \sum\limits_{i=1}^{n} \frac{f[i]}{(i-1)!} * \frac{g[n-i]}{(n-i)!} \)

设 \( A[i] = \frac{g[i]}{(i-1)!} \) , \( B[i] = \frac{f[i]}{(i-1)!} \) , \( C[i] = \frac{g[i]}{i!} \)

注意这里 \( A[0] = 0 \) , \( B[0] = 0 \) , \( C[0] = 1 \)

所以 \( A(x) = B(x) * C(x) \)

即 \( B(x) = A(x) * C^{-1}(x) ( mod x^{n+1} ) \)

多项式求逆即可;

别忘了外层的乘法还要处理一下 \( rev \) 数组。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=;
int n,a[xn],b[xn],c[xn],t[xn],rev[xn],jc[xn],jcn[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
int C(int x){return ((ll)x*(x-)/)%(mod-);}
void init()
{
jc[]=;
for(int i=;i<=n;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[n]=pw(jc[n],mod-);
for(int i=n-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
void ntt(int *a,int tp,int lim)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int len=(mid<<),wn=pw(,tp==?(mod-)/len:(mod-)-(mod-)/len);
for(int j=;j<lim;j+=len)
for(int k=,w=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
void inv(int *a,int *b,int n)
{
if(n==){b[]=pw(a[],mod-); return;}
inv(a,b,(n+)>>);
int lim=,l=;
while(lim<n+n)lim<<=,l++;
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<n;i++)t[i]=a[i];
for(int i=n;i<lim;i++)t[i]=;
ntt(t,,lim); ntt(b,,lim);
for(int i=;i<lim;i++)b[i]=upt((-(ll)t[i]*b[i])%mod*b[i]%mod);
ntt(b,-,lim);
for(int i=n;i<lim;i++)b[i]=;
}
int main()
{
n=rd(); init();
int lim=,l=;
while(lim<=n)lim<<=,l++;
for(int i=;i<lim;i++)a[i]=(ll)pw(,C(i))*jcn[i-]%mod;
for(int i=;i<lim;i++)c[i]=(ll)pw(,C(i))*jcn[i]%mod;
c[]=;
inv(c,b,n+);
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(l-)));//!!!
ntt(a,,lim); ntt(b,,lim);
for(int i=;i<lim;i++)b[i]=(ll)a[i]*b[i]%mod;
ntt(b,-,lim);
printf("%lld\n",(ll)b[n]*jc[n-]%mod);
return ;
}

多项式求逆

也可以用指数型生成函数,具体做法可以看这篇博客:https://blog.csdn.net/wzq_qwq/article/details/48435621

关于为什么 \( G(x) = e^{F(x)} \)

因为从组合意义上来看,任意无向图实际上可以分为:由0个连通图组成(没有点),由1个连通图组成,由2个连通图组成(这2个之间不连通),由3个连通图组成...

所以 \( G(x) = 1 + \frac{F(x)}{1!} + \frac{F(x)^{2}}{2!} + \frac{F(x)^{3}}{3!} + ... \)

即 \( G(x) = e^{F(x)} \)

而 \( G(x) \) 很好构造,求 \( F(x) = lnG(x) \)

求 \( ln \) 的方法可以看这两篇博客:

https://blog.csdn.net/litble/article/details/81749788

https://blog.csdn.net/ezoixx118/article/details/81235586

直接用上公式...这题原来是多项式求 \( ln \) 的裸题;

别忘了最后乘上 \( n! \)

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=;
int n,g[xn],dg[xn],ig[xn],t[xn],rev[xn],jc[xn],jcn[xn];
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return f?ret:-ret;
}
ll pw(ll a,ll b)
{
ll ret=; b=b%(mod-);
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
jc[]=;
for(int i=;i<=n;i++)jc[i]=(ll)jc[i-]*i%mod;
jcn[n]=pw(jc[n],mod-);
for(int i=n-;i>=;i--)jcn[i]=(ll)jcn[i+]*(i+)%mod;
}
void ntt(int *a,int tp,int lim)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
int len=(mid<<),wn=pw(,tp==?(mod-)/len:(mod-)-(mod-)/len);
for(int j=;j<lim;j+=len)
for(int k=,w=;k<mid;k++,w=(ll)w*wn%mod)
{
int x=a[j+k],y=(ll)w*a[j+mid+k]%mod;
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
}
}
if(tp==)return; int inv=pw(lim,mod-);
for(int i=;i<lim;i++)a[i]=(ll)a[i]*inv%mod;
}
void inv(int *a,int *b,int n)
{
if(n==){b[]=pw(a[],mod-); return;}
inv(a,b,(n+)>>);
int lim=,l=;
while(lim<n+n)lim<<=,l++;
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
for(int i=;i<n;i++)t[i]=a[i];
for(int i=n;i<lim;i++)t[i]=;
ntt(t,,lim); ntt(b,,lim);
for(int i=;i<lim;i++)b[i]=upt((-(ll)t[i]*b[i])%mod*b[i]%mod);
ntt(b,-,lim);
for(int i=n;i<lim;i++)b[i]=;
}
int main()
{
n=rd(); init();
for(int i=;i<=n;i++)
{
if(i<)g[i]=;
g[i]=(ll)pw(,(ll)i*(i-)/)*jcn[i]%mod;
}
for(int i=;i<=n;i++)dg[i-]=(ll)i*g[i]%mod;
dg[n]=;//
inv(g,ig,n+);
int lim=,l=;
while(lim<n+n)lim<<=,l++;
for(int i=;i<lim;i++)rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
ntt(ig,,lim); ntt(dg,,lim);
for(int i=;i<lim;i++)dg[i]=(ll)ig[i]*dg[i]%mod;
ntt(dg,-,lim);
printf("%lld\n",(ll)dg[n-]*pw(n,mod-)%mod*jc[n]%mod);
return ;
}

多项式求ln

bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)的更多相关文章

  1. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  2. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  3. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  4. bzoj 3456 城市规划 无向简单连通图个数 多项式求逆

    题目大意 求n个点的无向简单连通图个数 做法1 \(f[i]\)表示i个点的无向简单连通图个数 \(g[i]=2^{\frac {i*(i-1)}{2}}\)表示i个点的无向简单图个数(不要求连通) ...

  5. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  6. BZOJ 3456: 城市规划 多项式求逆

    Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接 ...

  7. BZOJ 3456: 城市规划(dp+多项式求逆)

    传送门 解题思路 这道题就是求带标号的无向连通图个数,首先考虑\(O(n^2)\)的做法,设\(f_i\)表示有\(i\)个节点的无向连通图个数,那么考虑容斥,先把所有的无向图求出,即为\(2^{C( ...

  8. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  9. BZOJ 3456 城市规划 (组合计数、DP、FFT)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 著名的多项式练习题,做法也很多,终于切掉了纪念 首先求一波递推式: 令\(F(n ...

随机推荐

  1. Anaconda2

    Anaconda 是一个打包的python,一次把好多需要的包都安装好了.对于Python2.7把PyQt5都弄好了,不需要自己来编译! 看看这个 http://conda.pydata.org/do ...

  2. vsftpd 虚拟用户限定在虚拟用户目录

    1.安装vsftpd yum -y install pam pam-devel db4 db4-tcl vsftpd 2.更名默认配置文件,以便恢复 cp /etc/vsftpd/vsftpd.con ...

  3. PowerBuilder -- 变更某列的背景色

    记得把background.mode设置为2 li_col++ ls_col[li_col] = ls_fit_no ls_column = ' col' + String(li_col) ls_co ...

  4. SQLServer中游标实例介绍(转)

    引言 我们先不讲游标的什么概念,步骤及语法,先来看一个例子: 表一 OriginSalary                      表二 AddSalary 现在有2张表,一张是OriginSal ...

  5. 【题解】DZY Loves Chinese

    [题解]DZY Loves Chinese II 不吐槽这题面了... 考虑如何维护图的连通性,如果把图的变成一颗的\(dfs\)生成树,那么如果把一个节点的父边和他接下来所有的返祖边删除,那么我们就 ...

  6. SAP-财务会计

    [转自 http://blog.itpub.net/195776/viewspace-1023913/] 一.FI组织架构1主数据1.1总帐科目1.2帐户组.1.3统驭科目1.4 总帐未清项管理2 凭 ...

  7. LeetCode:最接近的三数之和【16】

    LeetCode:最接近的三数之和[16] 题目描述 给定一个包括 n 个整数的数组 nums 和 一个目标值 target.找出 nums 中的三个整数,使得它们的和与 target 最接近.返回这 ...

  8. android MVP模式思考

    在软件开发设计中,有多种软件设计模式,如web开发中经典的MVC, 将后台分为三层:Model层,View层和Controller层,其中,Model主要是数据处理,如数据库,文件,或网络数据等:Vi ...

  9. 【转】BigInteger、BigDecimal详解

    参考 http://lavasoft.blog.51cto.com/62575/228705/ 从Java4到Java5,Java对BigInteger.BigDecimal两个类功能一直再做扩展与改 ...

  10. 调用微信接口token的问题

    前言 微信的影响力众所周知,越来越多的人也都离不开它,工作,生活,社交的好帮手.相信大家对微信公众号,小程序也都不陌生,那么在开发公众号,小程序的时候需要调用到微信的接口,固然就会遇到token的问题 ...