题意:求高斯消元中自由元的个数,输出1<<ans;

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
int a[N][N],ans[N];
int T,n,x,nn;
int gauss(int nn){
int i,j,k,l;
for(i=,j=;i<=nn&&j<=nn;j++){
for(k=i;k<=nn;k++)if(a[k][j])break;
if(a[k][j]){
for(l=;l<=nn+;l++)swap(a[i][l],a[k][l]);
for(l=;l<=nn;l++){
if(l!=i&&a[l][j])for(k=;k<=nn+;k++)a[l][k]^=a[i][k];
}
i++;
}
}
for(j=i;j<=nn;j++)if(a[j][n+])return -;
return <<(n-i+);
} int main(){
scanf("%d",&T);
while(T--){
memset(a,,sizeof a);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i][n+]);
for(int i=;i<=n;i++)scanf("%d",&x),a[i][n+]^=x;
int tx,ty;
while(scanf("%d%d",&tx,&ty)&&(tx||ty))a[ty][tx]=;//注意
for(int i=;i<=n;i++)a[i][i]=;
int ans=gauss(n);
if(ans==-)printf("Oh,it's impossible~!!\n");
else printf("%d\n",ans);
}
return ;
}

[poj1830]开关问题(高斯消元)的更多相关文章

  1. poj1830 开关问题[高斯消元]

    其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...

  2. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  3. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  4. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ1830开关问题——gauss消元

    题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转 ...

  6. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  7. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

  8. POJ 1830 开关问题 [高斯消元XOR]

    和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...

  9. POJ - 1830:开关问题 (开关问题-高斯消元-自由元)

    pro:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开. ...

  10. POJ.1830.开关问题(高斯消元 异或方程组)

    题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...

随机推荐

  1. 转载 ----MAC 上搭建lua

    MAC 上搭建lua   其实mac上搭建lua环境,google上大把资料,我只是整合一下,因为小弟搭建的时候确实碰到一些问题. 下载和安装lua:(转自这里) 1.  下载最新版的lua-5.2. ...

  2. 搭建sftp服务+nginx代理

    在公司,经常会用到sftp服务,比如两个公司对接生产项目,其中一方,要在sftp上上传pdf文件,另一方公司要在sftp服务器上用nginx代理直接下载pdf文件.下面就说说我在实际中应用到的sftp ...

  3. 【BZOJ4241】历史研究 分块

    [BZOJ4241]历史研究 Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开 ...

  4. 我的Java开发学习之旅------>Java经典排序算法之二分插入排序

    一.折半插入排序(二分插入排序) 将直接插入排序中寻找A[i]的插入位置的方法改为采用折半比较,即可得到折半插入排序算法.在处理A[i]时,A[0]--A[i-1]已经按关键码值排好序.所谓折半比较, ...

  5. Ceph集群rbd-mirror A、B区域备份实施方案

    Ceph集群rbd-mirror A.B区域备份实施方案 备注:首先准备两个集群, 并确认其状态,集群的准备过程在这就不做陈述 1.查看集群状态 A区域 [root@ceph2111 ceph]# c ...

  6. Java for LeetCode 084 Largest Rectangle in Histogram【HARD】

    For example, Given height = [2,1,5,6,2,3], return 10. 解题思路: 参考Problem H: Largest Rectangle in a Hist ...

  7. POJ - 3984 迷宫问题 【BFS】

    题目链接 http://poj.org/problem?id=3984 思路 因为要找最短路 用BFS 而且 每一次 往下一层搜 要记录当前状态 之前走的步的坐标 最后 找到最短路后 输出坐标就可以了 ...

  8. 利用iOS原生系统进行人脸识别+自定义滤镜(GPUImage)

    人脸识别+滤镜效果(基于GPUImage实现的自定义滤镜) 最近碰到一个好玩的需求.说要客户端这边判定一下是否有人脸.在有的基础上.对相片做进一步的美化滤镜处理. 首先是人脸的识别判定; //将图片对 ...

  9. Algorithm: inversion

    inversion就是逆序对 题目:现给出一个数列,求该数列中的逆序对数(逆序数).本节给出三种方法:方法一是最直接的暴力方法:方法二是基于归并分治的思想:方法三是基于线段树的.   [解法一] 暴力 ...

  10. vs2010 windows service 项目不能引用类库项目

    在一个windows 服务项目A中,引用了另外一个项目B,可以使用自动完成,引用其他项目中的类,按理,可以自动提示了,应该就是没问题了,但编译时却提示"未能找到类型或命名空间名称" ...