[poj1830]开关问题(高斯消元)
题意:求高斯消元中自由元的个数,输出1<<ans;
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=;
int a[N][N],ans[N];
int T,n,x,nn;
int gauss(int nn){
int i,j,k,l;
for(i=,j=;i<=nn&&j<=nn;j++){
for(k=i;k<=nn;k++)if(a[k][j])break;
if(a[k][j]){
for(l=;l<=nn+;l++)swap(a[i][l],a[k][l]);
for(l=;l<=nn;l++){
if(l!=i&&a[l][j])for(k=;k<=nn+;k++)a[l][k]^=a[i][k];
}
i++;
}
}
for(j=i;j<=nn;j++)if(a[j][n+])return -;
return <<(n-i+);
} int main(){
scanf("%d",&T);
while(T--){
memset(a,,sizeof a);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i][n+]);
for(int i=;i<=n;i++)scanf("%d",&x),a[i][n+]^=x;
int tx,ty;
while(scanf("%d%d",&tx,&ty)&&(tx||ty))a[ty][tx]=;//注意
for(int i=;i<=n;i++)a[i][i]=;
int ans=gauss(n);
if(ans==-)printf("Oh,it's impossible~!!\n");
else printf("%d\n",ans);
}
return ;
}
[poj1830]开关问题(高斯消元)的更多相关文章
- poj1830 开关问题[高斯消元]
其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...
- POJ - 1681: Painter's Problem (开关问题-高斯消元)
pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...
- POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)
pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...
- POJ 3185 The Water Bowls 【一维开关问题 高斯消元】
任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ1830开关问题——gauss消元
题目链接 分析: 第一个高斯消元题目,操作是异或.奇偶能够用0.1来表示,也就表示成bool类型的方程,操作是异或.和加法没有差别 题目中有两个未知量:每一个开关被按下的次数(0.1).每一个开关的转 ...
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- POJ 1830 开关问题 (高斯消元)
题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...
- POJ 1830 开关问题 [高斯消元XOR]
和上两题一样 Input 输入第一行有一个数K,表示以下有K组测试数据. 每组测试数据的格式如下: 第一行 一个数N(0 < N < 29) 第二行 N个0或者1的数,表示开始时N个开关状 ...
- POJ - 1830:开关问题 (开关问题-高斯消元-自由元)
pro:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开. ...
- POJ.1830.开关问题(高斯消元 异或方程组)
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...
随机推荐
- Windows上搭建Kafka
搭建环境: 1,安装JDK JAVA_HOME: C:\Program Files (x86)\Java\jre1.8.0_60(这个是默认安装路径,如果安装过程中更改了安装目录,把更改后的路径填上就 ...
- QTP自动化测试框架简述
1.使用框架的原因? 框架是一组自动化测试的规范.测试脚本的基础代码,以及测试思想.惯例的集合,从而减少冗余的代码.提高代码生产率,重用性和可维护性. 2.自动化测试框架的架构 脚本层(业务组件开发) ...
- git服务的安装和使用
参考文章 http://www.centoscn.com/image-text/install/2014/0514/2972.html 1.搭建Git服务器yum安装Git服务器创建一个git用户,用 ...
- Chrome性能分析工具lightHouse用法指南
本文主要讲如何使用Chrome开发者工具linghtHouse进行页面性能分析. 1.安装插件 非常简单,点击右上角的“添加至Chrome”即可. 2.使用方式 1)打开要测试的页面,点击浏览器右上角 ...
- 一起来学linux:进程
简单来说,每当执行一个程序或者命令,启动事件的时候都会得到一个PID,也就是进程ID.比如用户登陆的时候就会得到一个PID.如下所示.两个用户zhf和root在登陆后分别获得PID 3212和3214 ...
- MVC+Ext.net零基础学习记录(三)
这里开始说明一下,如何在MVC项目中引用EXT.NET,这里参考:http://www.cnblogs.com/zhanghaomars/p/3470987.html
- Shell 特殊位置参数的变量
$0 -- 获取当前执行shell脚本的 文件名 $n -- 获取当前执行shell脚本的 第n个参数 $# -- 获取当前执行shell脚本的 带的参数个数 $? -- 获取执行上一个指令的执行状态 ...
- JAVA- String类练习
JAVA- String类练习 需求1:去除字符串两边空格的函数,写一个自己的trim(); public class TestTrim { public static void main(Strin ...
- BZOJ 3624 [Apio2008]免费道路:并查集 + 生成树 + 贪心【恰有k条特殊路径】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3624 题意: 给你一个无向图,n个点,m条边. 有两种边,种类分别用0和1表示. 让你求一 ...
- 读取配置和动态配置(C方法)
读取配置 无论何种配置文件,定义了配置文件之后,都统一使用系统提供的C方法(可以借助Config单词来帮助记忆)来读取已有的配置.用法:C('参数名称') 例如,读取当前的URL模式配置参数:$mod ...