WalkOverATree

题意:给你一棵树,有个人在节点0,现在问你,这个人走L步,最多能访问多少个不同的节点,一个节点可以被走多次,但只算一次。

题解:这个问题的关键在于,每个点最多走两次,这是因为我要么一次性走到这个点,要么从这个点回去走其他的点,不可能出现走三次的情况,这里需要细想清楚。

那么我们可以得到这样的一个算法:枚举一条一次性走的路径,想象成主干道,这个主干道上连接有若干旁道,那么我可以访问这个旁道上的某些点,然后返回主干道,这些点我一共要用两倍的步数才能走完,因为要返回主干道,并且容易发现,这对任意一个旁道都是一样的。

设d[i]表示i离根节点的距离,ans是最终的答案,那么ans=max(ans,d[i]+1+min(n-d[i]-1,(L-d[i])/2))。

SumOverPermutations

题意:

有个奇葩,组合数学很渣,老师问他:无限个n种颜色的球放在n个有顺序的盒子中,每个盒子放一个,相邻盒子的球的颜色不同,有多少种方法。这个奇葩给了个奇葩的解答,他说这和放的顺序有关,比如有三个盒子,三种颜色的球,若放的顺序是 1 2 3,那么答案就是3×2×2,若放的顺序是 1 3 2,那么答案就是3×3×1。更一般的,他认为,若一个位置的左侧和右侧都被放了,那么现在有(n-2)种可能性,若只有一侧被放了,那么有(n-1)种可能性,若两侧都没放,那么有n种可能性。我们知道这是明显错误的,但是,题目就是问你,给你个n,这n!种放的顺序按照这个奇葩的算法得到的答案是多少。

题解:

令$dp[i]$表示$n$种颜色放在$i$个盒子中,答案是多少。那么转移就只有两种情况:

一种是将第$i$个球放在边界上,这种的转移是$dp[i]=2*dp[i-1]*(n-1)$,第一项的2表示左右两个边界,第二项$dp[i-1]$表示$i-1$时的情况,第三项$n-1$表示由于第$i$个球在边界,所以只乘$n-1$

另外一种是将第$i$个球放在中间某个位置,假设其左侧有$j$个球,那么转移必然是

$$dp[i]=\sum\limits_{j=1}^{i-2}C_{i-1}^j*dp[j]*dp[i-j-1]*(n-2)$$

所以总的转移是

$$dp[i]=(\sum\limits_{j=1}^{i-2}C_{i-1}^j*dp[j]*dp[i-j-1]*(n-2))+2*dp[i-1]*(n-1)$$

答案显然是$dp[n]$

long long dp[MAX_N];
long long mod=;
long long C[MAX_N][MAX_N]; class SumOverPermutations
{
public:
int findSum(int n)
{
C[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
C[i][j]=(j==?:C[i-][j-]+C[i-][j])%mod;
dp[]=n%mod;
dp[]=n%mod*(n-)%mod*%mod;
for(int i=;i<=n;i++){
dp[i]=%mod*(n-)%mod*dp[i-]%mod;
for(int j=;j<=i-;j++)
dp[i]=(dp[i]+C[i-][j]%mod*dp[j]%mod*dp[i-j-]%mod*(n-)%mod)%mod;
}
return dp[n]%mod;
}
};

Topcoder SRM 666 DIV 1的更多相关文章

  1. TopCoder SRM 560 Div 1 - Problem 1000 BoundedOptimization & Codeforces 839 E

    传送门:https://284914869.github.io/AEoj/560.html 题目简述: 定义"项"为两个不同变量相乘. 求一个由多个不同"项"相 ...

  2. TopCoder SRM 667 Div.2题解

    概览: T1 枚举 T2 状压DP T3 DP TopCoder SRM 667 Div.2 T1 解题思路 由于数据范围很小,所以直接枚举所有点,判断是否可行.时间复杂度O(δX × δY),空间复 ...

  3. Topcoder SRM 656 (Div.1) 250 RandomPancakeStack - 概率+记忆化搜索

    最近连续三次TC爆零了,,,我的心好痛. 不知怎么想的,这题把题意理解成,第一次选择j,第二次选择i后,只能从1~i-1.i+1~j找,其实还可以从j+1~n中找,只要没有被选中过就行... [题意] ...

  4. [topcoder]SRM 646 DIV 2

    第一题:K等于1或者2,非常简单.略.K更多的情况,http://www.cnblogs.com/lautsie/p/4242975.html,值得思考. 第二题:http://www.cnblogs ...

  5. [topcoder]SRM 633 DIV 2

    第一题,http://community.topcoder.com/stat?c=problem_statement&pm=13462&rd=16076 模拟就可以了. #includ ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. Topcoder SRM 648 (div.2)

    第一次做TC全部通过,截图纪念一下. 终于蓝了一次,也是TC上第一次变成蓝名,下次就要做Div.1了,希望div1不要挂零..._(:зゝ∠)_ A. KitayutaMart2 万年不变的水题. # ...

  8. 【topcoder SRM 702 DIV 2 250】TestTaking

    Problem Statement Recently, Alice had to take a test. The test consisted of a sequence of true/false ...

  9. TopCoder SRM 639 Div.2 500 AliceGameEasy

    题意: 一个游戏有n轮,有A和B比赛,谁在第 i 轮得胜,就获得 i 分,给出x,y,问A得x分,B得y分有没有可能,如果有,输出A最少赢的盘数 解题思路: 首先判断n(n+1)/2 = (x+y)是 ...

随机推荐

  1. sql中over的用法

    over不能单独使用,要和分析函数:rank(),dense_rank(),row_number()等一起使用.其参数:over(partition by columnname1 order by c ...

  2. Redis实现之服务器

    命令请求的执行过程 一个命令请求从发送到获得回复的过程中,客户端和服务器需要完成一系列操作.举个栗子,如果我们使用客户端执行以下命令: 127.0.0.1:6379> SET KEY VALUE ...

  3. Python虚拟机类机制之对象模型(一)

    Python对象模型 在Python2.2之前,Python中存在着一个巨大的裂缝,就是Python的内置类type,比如:int和dict,这些内置类与程序员在Python中自定义的类并不是同一级别 ...

  4. play后面加the不加the如何分辨

    play表示“参加(某种球类运动或棋牌类的活动)”时,不需要定冠词the,后面直接加球类运动名称或棋牌类活动名称,可根据实际情况翻译成“打,踢,下”等.例如: 1) He often plays fo ...

  5. CentOS 7使用dnf安装Memcached以及启动、停止、开机启动等设置

    1.安装Memcached dnf install memcached 根据提示完成安装 2.启动Memcached 输入以下命令: service memcached start 输出以下内容: R ...

  6. idea中将项目与github关联

    © 版权声明:本文为博主原创文章,转载请注明出处 1.在github中创建一个账号:https://github.com/join?source=header-home 2.下载并安装git:http ...

  7. 【两种方式 Service References和 web References 】手把手教你引入webservice 服务

    1.对于一个webservie服务我们如何引入到自己的项目中去呢 第一种方法[Service References]:鼠标移到属性上 右键添加服务引用 然后在地址栏输入webservice 地址 点击 ...

  8. 习题:玛丽卡(SPFA)

    玛丽卡(wikioi1021) [题目描述 ]麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复.因为她和他们不住在同一个城市,因此她开始准备她的长途旅行.在这个国家中每两个城市之间最多只有一条路相通, ...

  9. 简单数据结构题(from 钟子谦——IOI2018集训队自选题)

    简单数据结构题(from 钟子谦--IOI2018集训队自选题) 试题描述 给一棵 \(n\) 个点的树,点权开始为 \(0\) ,有 \(q\) 次操作,每次操作是选择一个点,把周围一圈点点权 \( ...

  10. [HAOI2010][bzoj2424] 订货 [费用流]

    题面 传送门 思路 这题其实挺水的......做过餐巾计划问题就能明白,是同一个道理 首先,显然刚刚好满足每一个月的需求,会得到最优解(废话-_-||) 然后我们发现,货物在不同的月之间的转移,可以比 ...