Cryptography I 学习笔记 --- 数论简介
0. Zn代表{0,1....n-1}的集合
1. 模运算符合交换律结合律
2. gcd(greatest common divisor),可以由扩展欧几里得算法快速得到。
3. 模逆(modular inversion),在Zn上,x的模逆为y,那么x*y=1 mod n
4. Zn上如果x有模逆,那么x与n互质,也就是gcd(x,n)=1
5. Zn*代表Zn中,所有可逆元素的集合。那么如果n为质数,那么Zn* = Zn - {0}
6. 费马小定理:如果p是质数,那么任意x ∈ Zp*,都有xp-1 = 1 (在Zp上)。可以用费马小定理判定一个数是否为素数,但是有极少数的Carmichael数会躲过这一检测
7. 如果g ∈ Zp* 并且 {1,g,g2,g3...gp-2}=Zp* ,那么g是Zp* 的生成元(generator)
8. 对于g ∈ Zp*,{1,g,g2,g3...gp-2}的大小,是g在p上的序(Order),记做ordp(g)。另外有,(p -1 ) 一定能被 ordp(g) 整除
9. 欧拉函数:φ(n) = 为从1到n,与n互质的数的个数。
如果n为质数:φ(n) = n-1
如果n为质数p的k次方,那么φ(n) =pk-pk-1
如果n=p*p,且p与q互质,那么φ(n) = φ(q) *φ(p)
10. 欧拉公式:如果a与n互质,那么aφ(n) = 1 mod n。很显然,费马小定理是欧拉公式的特例
11. 如何求某个元素的模逆?可以利用欧拉公式:aφ(n) = a * aφ(n)-1 = 1 mod n,也就是说a的模逆是 aφ(n)-1 mod n
12. 中国剩余定理:只需要较弱的一个结论:如果p与q互质,且x = y mod p,x = y mod q,那么可以得到x = y mod p * q
13. 如何求一个阶为n的有限循环群的生成元?以及一个阶为n的有限循环群的生成元有多少个?
如果gcd(n, r)=1,也就是说只要r与n互质,那么r就是这个阶为n的有限循环群的生成元
也就是说,一个阶为n的有限循环群的生成元有φ(n)个。
Cryptography I 学习笔记 --- 数论简介的更多相关文章
- Linux内核学习笔记-1.简介和入门
原创文章,转载请注明:Linux内核学习笔记-1.简介和入门 By Lucio.Yang 部分内容来自:Linux Kernel Development(Third Edition),Robert L ...
- React学习笔记 - JSX简介
React Learn Note 2 React学习笔记(二) 标签(空格分隔): React JavaScript 一.JSX简介 像const element = <h1>Hello ...
- CUBRID学习笔记 1 简介 cubrid教程
CUBRID 是一个全面开源,且完全免费的关系数据库管理系统.CUBRID为高效执行Web应用进行了高度优化,特别是需要处理大数据量和高并发请求的复杂商务服务.通过提供独特的最优化特性,CUBRID可 ...
- shiro学习笔记_0100_shiro简介
前言:第一次知道shiro是2016年夏天,做项目时候我要写springmvc的拦截器,申哥看到后,说这个不安全,就给我捣鼓了shiro,我就看了下,从此认识了shiro.此笔记是根据网上的视频教程记 ...
- Mybatis-Plus 实战完整学习笔记(一)------简介
第一章 简介 1. 什么是MybatisPlus MyBatis-Plus(简称 MP)是一个 MyBatis 的增强工具,在 MyBatis 的基础上只 ...
- ElasticSearch学习笔记-01 简介、安装、配置与核心概念
一.简介 ElasticSearch是一个基于Lucene构建的开源,分布式,RESTful搜索引擎.设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便.支持通过HTTP使用JSON进 ...
- python学习笔记1--python简介和第一行代码编写
一.什么是python? python是一种面向对象,解释型语言,它语法简介,容易学习.本节博客就来说说本人学习python的心得体会. 二.python环境安装 目前python版本有python2 ...
- symfony学习笔记1—简介
1.symfony快速入门还是先看代码结构把,这个是拿到代码的第一印象,app/:整个应用的配置,模版,translations,这个可能是多语言文件什么,src/:项目php文件,vendor/:第 ...
- REVIT个人学习笔记——1.简介及熟悉界面
此贴并非教学,主要是自学笔记,所述内容只是些许个人学习心得的记录和备查积累,难以保证观点正确,也不一定能坚持完成. 如不幸到访,可能耽误您的时间,也难及时回复,贴主先此致歉.如偶有所得,相逢有缘,幸甚 ...
随机推荐
- STM32位带操作
STM32的位带操作是基于cortex内核自带的,而不是st公司独创.基本的思路就是用一个32位的地址空间访问一个bit,因为stm32只支持32位数据的读取,不像51单片机一样,是可以单独对一位操作 ...
- Fibonacci again and again HDU - 1848
任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)=2; F(n)=F(n-1)+F(n-2)(n>=3); 所以,1, ...
- 《鸟哥的Linux私房菜》学习笔记(8)——bash脚本编程之变量
一.变量命名 1.只能包含字母.数字和下划线,并且不能以数字开头, 2.不 ...
- JS 对于回调函数的理解,和常见的使用场景应用,使用注意点
很经常我们会遇到这样一种情况: 例如,你需要和其他人合作,别人提供数据,而你不需要关注别人获取或者构建数据的方式方法. 你只要对这个拿到的数据进行操作. 这样,就相当于我们提供一个外在的函数,别人 ...
- iOS下单例模式实现(一)(objective-c arc gcd)
单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 这里主要介绍下在arc下,利用gcd实现单例. 第一步:声明一个静态实例 static SoundTool *_instan ...
- nsfwjs鉴黄识别最小化案例
3个月前,也就是2月份左右吧,Github上出现一个开源项目: Infinite Red, Inc.工作室宣布开源旗下基于tensorflow的tfjs的鉴黄小工具 据说是从15000张图片中 进行机 ...
- Python 连接数据库失败
什么是 PyMySQL? PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中则使用mysqldb. PyMySQL 遵循 Python 数据库 AP ...
- 【数据结构与算法】Fibonacci Sequence
学计算机的对 Fibonacci 都并不陌生,在课堂上一讲到递归几乎都会提到 Fibonacci 数列.不久前,我对 Fibonacci 产生了一些兴趣,就在这里把自己的想法给记录下来. 递推公式: ...
- LINUX SHELL脚本攻略笔记[速查]
Linux Shell脚本攻略笔记[速查] 资源 shell script run shell script echo printf 环境变量和变量 pgrep shell数学运算 命令状态 文件描述 ...
- 抓取js动态生成数据
最近在抓数据,一般的网页数据抓取相对容易一些,今天在抓电视猫的节目单,发现有些数据时抓取不到的,Java端得到的HTML文件里面没有某一段代码,查了很多资料,发现说是js动态生成的数据,无法直接抓取, ...