题目链接

题意

给定 \(x,p,k\),求大于 \(x\) 的第 \(k\) 个与 \(p\) 互质的数。

思路

参考 蒟蒻JHY.

二分答案 \(y\),再去 \(check\) 在 \([x,y]\) 区间中是否有 \(k\) 个与 \(p\) 互质的数。

\(check\) 采用容斥,将 \(p\) 质因数分解,用这些质数组合成的数在 \([1,y]\) 范围内 容斥

Code

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int f[210], a[10], b[210], cnt;
void init(int p) {
cnt = 0;
for (int i = 2; i * i <= p; ++i) {
if (!(p % i)) {
a[cnt++] = i;
while (!(p % i)) p /= i;
}
}
if (p != 1) a[cnt++] = p;
for (int i = 1; i < (1<<cnt); ++i) {
b[i] = 1;
for (int j = 0; j < cnt; ++j) if (i & (1<<j)) b[i] *= a[j];
}
}
int get(int x) {
int ret = 0;
for (int i = 1; i < (1<<cnt); ++i) ret += f[i] * (x/b[i]);
return x-ret;
}
void work() {
int x, p, k, ans;
scanf("%d%d%d", &x,&p,&k);
init(p);
int l = x+1, r = 1000000000, num = get(x);
while (l<=r) {
int mid = l+r>>1;
if (get(mid)-num >= k) ans = mid, r = mid-1;
else l = mid+1;
}
printf("%d\n", ans);
}
int main() {
f[0] = -1;
for (int i = 1; i < 128; ++i) f[i] = -f[i^(i&-i)];
int T;
scanf("%d", &T);
while (T--) work();
return 0;
}

Codeforces 920G List Of Integers 二分 + 容斥的更多相关文章

  1. codeforces B. Friends and Presents(二分+容斥)

    题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...

  2. BZOJ 2440 [中山市选2011]完全平方数 二分+容斥

    直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...

  3. Codeforces 920G(二分+容斥)

    题意: 定义F(x,p)表示的是一个数列{y},其中gcd(y,p)=1且y>x 给出x,p,k,求出F(x,p)的第k项 x,p,k<=10^6 分析: 很容易想到先二分,再做差 然后问 ...

  4. Codeforces 920G - List Of Integers

    920G - List Of Integers 思路:容斥+二分 代码: #include<bits/stdc++.h> using namespace std; #define ll l ...

  5. YYHS-分数(二分+容斥)

    题目描述 KJDH是个十分善于探索的孩子,有一天他把分子分母小于等于n的最简分数列在了纸上,他想找到这些分数里第k小的数,这对于KJDH来说当然是非常轻易,但是KJDH最近多了很多妹子,他还要去找妹子 ...

  6. 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数

    Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...

  7. 第k个互质数(二分 + 容斥)

    描述两个数的a,b的gcd为1,即a,b互质,现在给你一个数m,你知道与它互质的第k个数是多少吗?与m互质的数按照升序排列. 输入 输入m ,k (1<=m<=1000000;1<= ...

  8. poj2773(欧基里德算法 或 二分+容斥)

    题目链接:https://vjudge.net/problem/POJ-2773 题意:给定m,k,求与m互质的第k个数. 思路一:利用gcd(a,b)=gcd(b*t+a,b)知道,与m互质的数是以 ...

  9. Codeforces Round 450 D 隔板法+容斥

    题意: Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers ...

随机推荐

  1. django+xadmin在线教育平台(一)

    大家好,此教程为在慕学网的实战教程Python升级3.6 强力Django+杀手级Xadmin打造在线教育平台的学习笔记,不对望指正! 使用Django+Xadmin打造在线教育平台(Python2, ...

  2. 关于sql查询结果集的链接

    开通博客有一段时间了,第一次博文.本身是个理工科的,没啥文采,就想着把平时遇到的问题记录下来,防止自己以后忘了还要去翻找. 今天看到同事写的代码,查询两张表里的数据,结果集类型是一样的.写了两条查询, ...

  3. php微信红包算法

    微信红包算法.php /**生成红包的函数*/ function getRandMoney($totalMoney, $totalPeople=2, $miniMoney=1){ $randRemai ...

  4. Python学习笔记:math模块(数学),random模块(随机数)

    math模块 math模块用于数学意义上的一些计算,常用的方法有: math.pi:PI的值(3.141592653589793). math.floor(x):返回一个小于等于x的最大整数(浮点类型 ...

  5. Python之路--Python初识

    Python简介 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程 ...

  6. [原创]使用python对视频/音频文件进行详细信息采集,并进行去重操作

    [原创]使用python对视频/音频文件进行详细信息采集,并进行去重操作 转载请注明出处 一.关于为什么用pymediainfo以及pymediainfo的安装 使用python对视频/音频文件进行详 ...

  7. has value '1.8', but '1.7' is required

    使用java7,自己又想在空闲时间学一些java8的新特性,故在安装完1.7之后又安装了1.8 eclispe在启动时报’has value ‘1.8’,but’1.7’ is required’的错 ...

  8. windows7下将Cygwin加入右键菜单,并从当前目录打开

    第一步:修改windows注册表 1·开始->运行(或者win键+R),输入REGEDIT,回车,打开注册表编辑器: 2·找到HKEY_CLASSES_ROOT\Directory\Backgr ...

  9. Watchmen CodeForces - 650A

    Watchmen CodeForces - 650A Watchmen are in a danger and Doctor Manhattan together with his friend Da ...

  10. 裸奔着造房子——对政府禁止采购Win8系统的一些看法

    前段时间有消息称政府招标的项目将禁止使用Win8系统,原因是Win8系统的安全架构将有利于暴露敏感信息给微软,而微软的老子是美利坚,老子想要知道什么,儿子当然不敢不从.因此Win8也被打入冷宫,微软多 ...