链接:https://vjudge.net/problem/HDU-3966

题意:

Our protagonist is the handsome human prince Aragorn comes from The Lord of the Rings. One day Aragorn finds a lot of enemies who want to invade his kingdom. As Aragorn knows, the enemy has N camps out of his kingdom and M edges connect them. It is guaranteed that for any two camps, there is one and only one path connect them. At first Aragorn know the number of enemies in every camp. But the enemy is cunning , they will increase or decrease the number of soldiers in camps. Every time the enemy change the number of soldiers, they will set two camps C1 and C2. Then, for C1, C2 and all camps on the path from C1 to C2, they will increase or decrease K soldiers to these camps. Now Aragorn wants to know the number of soldiers in some particular camps real-time.

思路:

第一次写树链剖分, 直接上模板。

代码:

#include <iostream>
#include <memory.h>
#include <string>
#include <istream>
#include <sstream>
#include <vector>
#include <stack>
#include <algorithm>
#include <map>
#include <queue>
#include <math.h>
#include <cstdio>
#include <set>
#include <iterator>
#include <cstring>
#include <assert.h>
using namespace std; typedef long long LL;
const int MAXN = 5e4+10;
vector<int> G[MAXN];
int Dis[MAXN], Fa[MAXN], Top[MAXN], Size[MAXN];
int Son[MAXN], Id[MAXN], Rk[MAXN];
int Seg[MAXN*4], A[MAXN], Add[MAXN*4];
int n, m, p;
int x, y;
int cnt = 0; void Init()
{
for (int i = 1;i <= n;i++)
G[i].clear();
memset(Seg, 0, sizeof(Seg));
memset(Son, 0, sizeof(Son));
memset(Add, 0, sizeof(Add));
cnt = 0;
} void Dfs1(int x, int u, int dep)
{
Dis[u] = dep;
Fa[u] = x;
Size[u] = 1;
for (int i = 0;i < G[u].size();i++)
{
int v = G[u][i];
if (v == x)
continue;
Dfs1(u, v, dep+1);
Size[u] += Size[v];
if (Size[v] > Size[Son[u]])
Son[u] = v;
}
} void Dfs2(int u, int top)
{
Top[u] = top;
Id[u] = ++cnt;
Rk[cnt] = u;
if (!Son[u])
return;
Dfs2(Son[u], top);
for (int i = 0;i < G[u].size();i++)
{
int v = G[u][i];
if (v != Son[u] && v != Fa[u])
Dfs2(v, v);
}
} void PushUp(int root)
{
Seg[root] = Seg[root<<1]+Seg[root<<1|1];
} void PushDown(int root, int l, int r)
{
if (Add[root])
{
int mid = (l+r)/2;
Add[root<<1] += Add[root];
Add[root<<1|1] += Add[root];
Seg[root<<1] += (mid-l+1)*Add[root];
Seg[root<<1|1] += (r-mid)*Add[root];
Add[root] = 0;
}
} void Build(int root, int l, int r)
{
if (l == r)
{
Seg[root] = A[Rk[l]];
return;
}
int mid = (l+r)/2;
Build(root<<1, l, mid);
Build(root<<1|1, mid+1, r);
PushUp(root);
} int Query(int root, int l, int r, int ql, int qr)
{
if (r < ql || qr < l)
return 0;
if (ql <= l && r <= qr)
return Seg[root];
PushDown(root, l, r);
int mid = (l+r)/2;
int res = 0;
res += Query(root<<1, l, mid, ql, qr);
res += Query(root<<1|1, mid+1, r, ql, qr);
PushUp(root);
return res;
} void Update(int root, int l, int r, int ql, int qr, int c)
{
if (r < ql || qr < l)
return;
if (ql <= l && r <= qr)
{
Seg[root] += (r-l+1)*c;
Add[root] += c;
return;
}
PushDown(root, l, r);
int mid = (l+r)/2;
Update(root<<1, l, mid, ql, qr, c);
Update(root<<1|1, mid+1, r, ql, qr, c);
PushUp(root);
} void UpdateLine(int l, int r, int c)
{
while (Top[l] != Top[r])
{
if (Dis[Top[l]] < Dis[Top[r]])
swap(l, r);
Update(1, 1, n, Id[Top[l]], Id[l], c);
l = Fa[Top[l]];
}
if (Id[l] < Id[r])
Update(1, 1, n, Id[l], Id[r], c);
else
Update(1, 1, n, Id[r], Id[l], c);
} int main()
{
// freopen("test.in", "r", stdin);
while (~scanf("%d%d%d", &n, &m, &p))
{
Init();
for (int i = 1;i <= n;i++)
scanf("%d", &A[i]);
for (int i = 1;i < n;i++)
{
scanf("%d%d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
}
Dfs1(0, 1, 1);
Dfs2(1, 1);
Build(1, 1, n);
// for (int i = 1;i <= n;i++)
// cout << Dis[i] << ' ';
// cout << endl;
// for (int i = 1;i <= n;i++)
// cout << Id[i] << ' ';
// cout << endl;
// for (int i = 1;i <= n;i++)
// cout << Top[i] << ' ' ;
// cout << endl;
char op[10];
int l, r, v, w;
while (p--)
{
scanf("%s", op);
if (op[0] == 'I')
{
scanf("%d%d%d", &l, &r, &v);
// cout << Top[l] << ' ' << Top[r] << endl;
UpdateLine(l, r, v);
}
else if (op[0] == 'D')
{
scanf("%d%d%d", &l, &r, &v);
v = -v;
UpdateLine(l, r, v);
}
else
{
scanf("%d", &w);
printf("%d\n", Query(1, 1, n, Id[w], Id[w]));
}
}
} return 0;
}

  

HDU - 3966-Aragorn' Story(树链剖分+线段树)的更多相关文章

  1. Aragorn's Story 树链剖分+线段树 && 树链剖分+树状数组

    Aragorn's Story 来源:http://www.fjutacm.com/Problem.jsp?pid=2710来源:http://acm.hdu.edu.cn/showproblem.p ...

  2. HDU 2460 Network(双连通+树链剖分+线段树)

    HDU 2460 Network 题目链接 题意:给定一个无向图,问每次增加一条边,问个图中还剩多少桥 思路:先双连通缩点,然后形成一棵树,每次增加一条边,相当于询问这两点路径上有多少条边,这个用树链 ...

  3. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  4. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  5. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  6. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  7. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  8. HDU4897 (树链剖分+线段树)

    Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...

  9. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  10. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

随机推荐

  1. BZOJ 1230 [Usaco2008 Nov]lites 开关灯:线段树异或

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1230 题意: 有n盏灯,一开始全是关着的. 有m次操作(p,a,b).p为0,则将区间[a ...

  2. css(4)

    类选择器和id选择器都有父子选择器. 在css文件中国,有时候为了简化样式,可以把相同的样式拿出来放在一起. display:inline display:block 行内元素里只能放行内元素,而块内 ...

  3. Educational Codeforces Round 17 颓废记

    又被虐了... (记一次惨痛的Codeforces) 好不容易登上去了Codeforces,22:35准时开打 第一题,一看:这不SB题嘛?直接枚举因数上啊.9min才过掉了pretest 第二题.. ...

  4. 【Python】Python figure显示的两种方式

    1. 两种方式: 终端输出图像新窗口输出图像 2. 终端输出命令: %matplotlib inline 新窗口输出命令: %matplotlib qt5 注意此两个语句是命令行输入,若在spyder ...

  5. 【Lintcode】104.Merge k Sorted Lists

    题目: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexit ...

  6. 【Lintcode】011.Search Range in Binary Search Tree

    题目: Given two values k1 and k2 (where k1 < k2) and a root pointer to a Binary Search Tree. Find a ...

  7. Ubuntu环境下对拍

    何为对拍 假设我在考场上写了一个能过样例的算法.然后它也能过大样例但是我觉得有些担心某些细节会出错,或者是它连大样例都过不了但是大样例过大无法肉眼差错,这个时候我们就需要对拍了. 所谓对拍,就是对着拍 ...

  8. 蓝桥杯Log大侠(线段树单点区间更新)

    标题:Log大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力... 变换的规则是: ...

  9. python基础知识-数字

    数字分为: 整数(int) 长整型(long) 浮点型(float) 一,整数 整数(int):即不带小数点的数字,如 12 ,45 ,0 ,3 #!/usr/bin/env python class ...

  10. 【转】Pro Android学习笔记(三):了解Android资源(上)

    在Android开发中,资源包括文件或者值,它们和执行应用捆绑,无需在源代码中写死,因此我们可以改变或替换他们,而无需对应用重新编译. 了解资源构成 参考阅读Android学习笔记(三八):资源res ...