[LOJ3054] 「HNOI2019」鱼
[LOJ3054] 「HNOI2019」鱼
链接
题解
首先想 \(O(n^3)\) 的暴力,不难发现枚举 \(A\) 和 \(D\) 后, \((B,C)\) 和 \((E,F)\) 两组点互相之间没有影响,因此可以分开计算,对于任意一组点,枚举其中一个点,另一个点即为枚举的点关于 \(AD\) 的对称点,暴力统计即可
然后首先考虑 \((E,F)\) 一组点。由于有 \(\angle ADE, \angle ADF \gt 90 \degree\) 的限制,那么 \(E,F\) 两个点被限制在一个半平面内。考虑先枚举 \(D\) 再按照极角序枚举 \(A\),那么每个点进入可用半平面一次离开可用半平面一次,复杂度 \(O(n^2)\)
下面考虑 \((B, C)\) 一组点。如果 \(A,D\) 确定了,那么相当于确定了 \(BC\) 的斜率。可以预处理枚举所有的 \(B,C\) 并按斜率归类,并且由于每一组 \(B,C\) 的斜率都相同,那么其所能对应的 \(AD\) 的斜率也相同,又 \(BC\) 的中点在 \(AD\) 上,所以对于确定的 \(BC\) 可以确定出 \(AD\) 所在直线。按照所在直线归类,每一类中按照 \(BC\) 的中点的 \(x\) 坐标排序,那么当 \(AD\) 确定时,仅需在其对应的一类中查询中点坐标在 \(AD\) 之间的所有 \(B,C\) 并统计个数,可以二分出结果,复杂度 \(O(n^2\log n^2)\)
代码
// Copyright lzt
#include <stdio.h>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <cmath>
#include <iostream>
#include <queue>
#include <string>
#include <ctime>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<long long, long long> pll;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define rep(i, j, k) for (register int i = (int)(j); i <= (int)(k); i++)
#define rrep(i, j, k) for (register int i = (int)(j); i >= (int)(k); i--)
#define Debug(...) fprintf(stderr, __VA_ARGS__)
inline ll read()
{
ll x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-')
f = -1;
ch = getchar();
}
while (ch <= '9' && ch >= '0')
{
x = 10 * x + ch - '0';
ch = getchar();
}
return x * f;
}
struct P
{
long long x, y;
long long len() { return 1ll * x * x + 1ll * y * y; }
} a[1009];
long long ans;
vector<int> p[1009][1009], v[1009][1009];
long long n, id[1009], nw, cnt[1009][1009][2], CNT, po, PO, tot, val[1000061], ID[1000061];
P dir[1000061];
bool bo[1009];
int nxt(int x) { return x == n ? 2 : x + 1; }
long long operator^(P a, P b) { return 1ll * a.x * b.y - 1ll * a.y * b.x; }
P operator-(P a, P b) { return (P){a.x - b.x, a.y - b.y}; }
P operator*(P a, int b) { return (P){a.x * b, a.y * b}; }
bool cmp(int x, int y) { return (a[x] - a[nw]).len() < (a[y] - a[nw]).len(); }
bool check(int x) { return a[x].x > a[nw].x || a[x].x == a[nw].x && a[nw].y < a[x].y; }
bool CHECK(int x) { return dir[x].x > a[nw].x || dir[x].x == a[nw].x && a[nw].y < dir[x].y; }
bool Check(P x) { return x.x > a[nw].x || x.x == a[nw].x && a[nw].y < x.y; }
bool Check2(P x) { return x.x > a[nw].x || x.x == a[nw].x && a[nw].y > x.y; }
bool CMP(int x, int y)
{
if (check(x) ^ check(y))
return check(x);
return ((a[x] - a[nw]) ^ (a[y] - a[nw])) < 0;
}
bool PMC(int x, int y)
{
if (CHECK(x) ^ CHECK(y))
return CHECK(x);
return ((dir[x] - a[nw]) ^ (dir[y] - a[nw])) < 0;
}
bool Cmp(P x, P y)
{
if (Check(x) ^ Check(y))
return Check(x);
return ((x - a[nw]) ^ (y - a[nw])) <= 0;
}
bool Cmp2(P x, P y)
{
if (Check2(x) ^ Check2(y))
return Check2(x);
return ((x - a[nw]) ^ (y - a[nw])) < 0;
}
void ins(int j)
{
if (bo[j])
return;
bo[j] = 1;
for (int k = 0, sz = v[nw][j].size(); k < sz; k++)
if (bo[v[nw][j][k]])
CNT++;
}
void del(int j)
{
if (!bo[j])
return;
bo[j] = 0;
for (int k = 0, sz = v[nw][j].size(); k < sz; k++)
if (bo[v[nw][j][k]])
CNT--;
}
int main()
{
scanf("%lld", &n), ans = 0;
for (int i = 1; i <= n; i++)
scanf("%lld%lld", &a[i].x, &a[i].y);
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
id[j] = j;
nw = i, sort(id + 1, id + 1 + n, cmp);
for (int j = 2; j <= n; j++)
for (int k = j - 1; (a[id[j]] - a[nw]).len() == (a[id[k]] - a[nw]).len(); k--)
if (((a[id[j]] - a[nw]) ^ (a[id[k]] - a[nw])) != 0)
{
tot = 0;
if (id[j] > id[k])
swap(j, k), tot = 1;
p[id[j]][id[k]].push_back(i), v[i][id[j]].push_back(id[k]), v[i][id[k]].push_back(id[j]);
if (tot)
swap(j, k);
}
}
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++)
{
cnt[i][j][0] = cnt[i][j][1] = 0;
for (int k = 0, sz = p[i][j].size(); k < sz; k++)
if (((a[i] - a[j]) ^ (a[i] - a[p[i][j][k]])) > 0)
cnt[i][j][0]++;
else
cnt[i][j][1]++;
}
for (int i = 1; i <= n; i++)
{
n += 8;
memset(bo, 0, sizeof(bo)), tot = 1;
for (int j = 1; j <= n - 8; j++)
if (i != j)
id[++tot] = j;
a[id[++tot] = (n - 7)] = (P){a[i].x + 1, a[i].y};
a[id[++tot] = (n - 6)] = (P){a[i].x, a[i].y - 1};
a[id[++tot] = (n - 5)] = (P){a[i].x - 1, a[i].y};
a[id[++tot] = (n - 4)] = (P){a[i].x, a[i].y + 1};
a[id[++tot] = (n - 3)] = (P){a[i].x + 1, a[i].y + 1};
a[id[++tot] = (n - 2)] = (P){a[i].x + 1, a[i].y - 1};
a[id[++tot] = (n - 1)] = (P){a[i].x - 1, a[i].y - 1};
a[id[++tot] = n] = (P){a[i].x - 1, a[i].y + 1};
nw = i, sort(id + 2, id + 1 + n, CMP), CNT = 0, po = n;
for (int j = 2; j <= n; j++)
if (a[id[j]].x > a[i].x)
ins(id[po = j]);
PO = 2, tot = 0;
rep(j, 1, n) rep(k, 1, n) {
if (j == k) continue;
}
rep(j, 1, n) rep(k, 1, n) {
if (j == k) continue;
}
rep(j, 1, n) rep(k, 1, n) {
if (j == k) continue;
}
for (int j = 1; j <= n; j++)
for (int k = 0, sz = v[i][j].size(), X; k < sz; k++)
if (v[i][j][k] > j)
{
X = v[i][j][k];
dir[++tot] = (P){a[j].x + a[X].x - a[i].x - a[i].x, a[j].y + a[X].y - a[i].y - a[i].y};
dir[tot] = (P){a[i].x + dir[tot].y, a[i].y - dir[tot].x};
if (((a[j] - a[X]) ^ (a[j] - a[i])) > 0)
val[tot] = cnt[j][X][1];
else
val[tot] = cnt[j][X][0];
}
dir[++tot] = (P){a[i].x, a[i].y + 1}, val[tot] = 0;
dir[++tot] = (P){a[i].x + 1, a[i].y}, val[tot] = 0;
dir[++tot] = (P){a[i].x, a[i].y - 1}, val[tot] = 0;
dir[++tot] = (P){a[i].x - 1, a[i].y}, val[tot] = 0;
dir[++tot] = (P){a[i].x + 1, a[i].y + 1}, val[tot] = 0;
dir[++tot] = (P){a[i].x + 1, a[i].y - 1}, val[tot] = 0;
dir[++tot] = (P){a[i].x - 1, a[i].y - 1}, val[tot] = 0;
dir[++tot] = (P){a[i].x - 1, a[i].y + 1}, val[tot] = 0;
for (int j = 1; j <= tot; j++)
ID[j] = j;
sort(ID + 1, ID + 1 + tot, PMC);
int en = nxt(po);
bool BO = 0;
for (int j = 2; j <= n; j++)
if (!check(id[j]) || a[id[j]].x > a[i].x)
{
PO = j;
break;
}
for (int j = 1; j <= tot; j++)
{
while ((!BO || nxt(po) != en) && Cmp2((P){a[i].x * 2 - dir[ID[j]].x, dir[ID[j]].y},
(P){a[id[nxt(po)]].x, a[i].y * 2 - a[id[nxt(po)]].y}))
BO = 1, ins(id[po = nxt(po)]);
while (PO <= n && Cmp(a[id[PO]], dir[ID[j]]))
del(id[PO]), PO++;
ans += 1ll * CNT * val[ID[j]];
}
n -= 8;
}
printf("%lld\n", ans * 4ll);
return 0;
}
[LOJ3054] 「HNOI2019」鱼的更多相关文章
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
- Loj #3057. 「HNOI2019」校园旅行
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你 ...
- 【loj - 3056】 「HNOI2019」多边形
目录 description solution accepted code details description 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时 ...
- 【loj - 3055】「HNOI2019」JOJO
目录 description solution accepted code details description JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或 ...
- LOJ 3059 「HNOI2019」序列——贪心与前后缀的思路+线段树上二分
题目:https://loj.ac/problem/3059 一段 A 选一个 B 的话, B 是这段 A 的平均值.因为 \( \sum (A_i-B)^2 = \sum A_i^2 - 2*B \ ...
- LOJ 3057 「HNOI2019」校园旅行——BFS+图等价转化
题目:https://loj.ac/problem/3057 想令 b[ i ][ j ] 表示两点是否可行,从可行的点对扩展.但不知道顺序,所以写了卡时间做数次 m2 迭代的算法,就是每次遍历所有不 ...
随机推荐
- html5--2.6新的布局元素(5)-nav
html5--2.6新的布局元素(4)-aside/nav 学习要点 了解aside/nav元素的语义和用法 通过实例理解aside/nav元素的用法 aside元素 aside元素通常用来设置侧边栏 ...
- tensorflow实现svm多分类 iris 3分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)
# Multi-class (Nonlinear) SVM Example # # This function wll illustrate how to # implement the gaussi ...
- druid相关的时间序列数据库——也用到了倒排相关的优化技术
Cattell [6] maintains a great summary about existing Scalable SQL and NoSQL data stores. Hu [18] con ...
- TF-IFD算法及python实现关键字提取
TF-IDF算法: TF:词频(Term Frequency),即在分词后,某一个词在文档中出现的频率. IDF:逆文档频率(Inverse Document Frequency).在词频的基础上给每 ...
- 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie
#10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...
- 京东SDK模板卡盘效果实现代码
最近在做京东模板,因为是最新平台,好多功能都需要摸索,俺技术一般,摸索出一个简易的卡盘功能 ——————使用的是分类推荐模块哦! 本着共享的精神,俺将代码放到这儿了,各人请自便.(代码还不够完善, ...
- Ubuntu Java环境变量配置
# java homeJAVA_HOME=/usr/local/jdk/jdk1.8.0_121JRE_HOME=JAVA_HOME/jreCLASSPATH=.:$JAVA_HOME/lib:$JR ...
- github怎么创建一个项目,怎么添加一个ssh-key的客户
1.第一步:打开https://github.com/,登陆成功.单击猫图标,进入页面,单击[start a project] 第二步:输入项目名称,选择public公有,不收费的.单击确认成功. 第 ...
- windows64位 redis安装 步骤
官方下载:http://redis.io/download 可以根据需要下载不同版本 windows版:https://github.com/MSOpenTech/redis/releases 在D盘 ...
- Ubuntu如何锁定分辨率
终于把Ubuntu的虚拟机装好了,但是分辨率没有1920*1080是什么鬼啊? 下面详细讲一下如何设置1920*1080的分辨率并设置,主要都是照着前辈的博客自己在操作一遍熟悉一下,嘿嘿. 1.安装v ...