题意大概是。给出一个图,保证每一个点至少有一条边以及随意两点间最多一条边。非常显然这个图有众多点集,若我们给每一个点定义一个权值,那每一个点集都有一个最小权值点,如今要求出一个点集,这个点集的最小权值点尽可能的大。

某个子集中。点的权值是这样算的。在该子集中这个点的度除以该点在图中的度。

乍看上去似乎无从下手。

能够显然知道的是。每一个点在图中的权值是非常easy算出来的,那我们尝试从图中进行删点。使得当前图的最小权值点的权值变大,显然能够知道要删除最小权值点。为什么呢?由于若删除次小权值点,若次小权值点跟最小权值点有连边,那最小权值点还是新图的最小权值点。若没有连边,那新图的最小权值点也依然未变。

所以仅仅有删除最小权值点才有可能改变新图的最小权值点,也仅仅有这样能让新图的最小权值发生改变。

那么到这里就十分明显了,仅仅要每次删除当前图的最小权值点。那么必定能够枚举出一个新图。这个新图的点构成的点集正是我们要的答案。

于是这个题就能够做了,我是直接做了两次删除,第一次得出最大最小权值是多少,第二次枚举到一个新图的最小权值等于最大最小权值。那么非常显然这个新图的子集就是答案。

维护一个小堆就好了,时间复杂度是2(n+m)log(n+m)

#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<iostream>
#include<algorithm>
#include<bitset>
#include<climits>
#include<list>
#include<iomanip>
#include<stack>
#include<set>
using namespace std;
struct node
{
int no;
double val;
node(){}
node(int no,double val)
{
this->no=no;
this->val=val;
}
bool operator <(node one)const
{
return val>one.val;
}
};
priority_queue<node>q[2];
bool fb[100010],dl[100010];
vector<int>edge[100010];
int d[100010][2],dd[100010];
int main()
{
int n,m,k;
cin>>n>>m>>k;
int sum=k;
while(k--)
{
int t;
cin>>t;
fb[t]=1;
}
while(m--)
{
int a,b;
cin>>a>>b;
d[a][0]++;
d[b][0]++;
if(!fb[a])
d[b][1]++;
if(!fb[b])
d[a][1]++;
edge[a].push_back(b);
edge[b].push_back(a);
}
double mn=1e99;
for(int i=1;i<=n;i++)
if(!fb[i])
{
q[0].push(node(i,double(d[i][1])/d[i][0]));
mn=min(mn,double(d[i][1])/d[i][0]);
}
q[1]=q[0];
int flag=0;
for(int i=0;i<2;i++)
{
memset(dl,0,sizeof(dl));
memset(dd,0,sizeof(dd));
if(i==1&&flag==0)
break;
while(q[i].size())
{
node t=q[i].top();
q[i].pop();
if(dl[t.no])
continue;
if(i==1)
{
if(t.no==flag)
break;
sum++;
}
dl[t.no]=1;
if(i==0&&t.val>mn)
{
mn=t.val;
flag=t.no;
}
for(int j=0;j<edge[t.no].size();j++)
{
int v=edge[t.no][j];
if(dl[v]||fb[v])
continue;
dd[v]++;
q[i].push(node(v,double(d[v][1]-dd[v])/d[v][0]));
}
}
}
cout<<n-sum<<endl;
for(int i=1;i<=n;i++)
if(!fb[i]&&!dl[i])
cout<<i<<" ";
}
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Nudist Beach is planning a military operation to attack the Life Fibers. In this operation, they will attack and capture several cities which are currently under the control of the Life Fibers.

There are n cities, labeled from 1 to n,
and m bidirectional roads between them. Currently, there are Life Fibers in every city. In addition, there are k cities
that are fortresses of the Life Fibers that cannot be captured under any circumstances. So, the Nudist Beach can capture an arbitrary non-empty subset of cities with no fortresses.

After the operation, Nudist Beach will have to defend the captured cities from counterattack. If they capture a city and it is connected to many Life Fiber controlled cities, it will be easily defeated. So, Nudist Beach would like to capture a set of cities
such that for each captured city the ratio of Nudist Beach controlled neighbors among all neighbors of that city is as high as possible.

More formally, they would like to capture a non-empty set of cities S with no fortresses of Life Fibers. The strength of a city  is
defined as (number of neighbors of x in S)
/ (total number of neighbors of x). Here, two cities are called neighbors if they are connnected with a road. The goal is to maximize
the strength of the weakest city in S.

Given a description of the graph, and the cities with fortresses, find a non-empty subset that maximizes the strength of the weakest city.

Input

The first line of input contains three integers n, m, k (2  ≤  n  ≤ 100 000, 1 ≤ m ≤ 100 000, 1 ≤ k ≤ n - 1).

The second line of input contains k integers, representing the cities with fortresses. These cities will all be distinct.

The next m lines contain the roads. The i-th
of these lines will have 2 integers ai, bi (1 ≤ ai, bi ≤ nai ≠ bi).
Every city will have at least one road adjacent to it.

There is no more than one road between each pair of the cities.

Output

The first line should contain an integer r, denoting the size of an optimum set (1 ≤ r ≤ n - k).

The second line should contain r integers, denoting the cities in the set. Cities may follow in an arbitrary order. This line should
not contain any of the cities with fortresses.

If there are multiple possible answers, print any of them.

Sample test(s)
input
9 8 4
3 9 6 8
1 2
1 3
1 4
1 5
2 6
2 7
2 8
2 9
output
3
1 4 5
input
10 8 2
2 9
1 3
2 9
4 5
5 6
6 7
7 8
8 10
10 4
output
8
1 5 4 8 10 6 3 7
Note

The first example case achieves a strength of 1/2. No other subset is strictly better.

The second example case achieves a strength of 1. Note that the subset doesn't necessarily have to be connected.

codeforces 553 D Nudist Beach的更多相关文章

  1. Codeforces 553D Nudist Beach(二分答案 + BFS)

    题目链接 Nudist Beach 来源  Codeforces Round #309 (Div. 1) Problem D 题目大意: 给定一篇森林(共$n$个点),你可以在$n$个点中选择若干个构 ...

  2. Codeforces 553D Nudist Beach(图论,贪心)

    Solution: 假设已经选了所有的点. 如果从中删掉一个点,那么其它所有点的分值只可能减少或者不变. 如果要使若干步删除后最小的分值变大,那么删掉的点集中肯定要包含当前分值最小的点. 所以每次删掉 ...

  3. codeforces 553D . Nudist Beach 二分

    题目链接 有趣的题. 给一个图, n个点m条边. 有k个点不可选择. 现在让你选出一个非空的点集, 使得点集中strength最小的点的strength最大. strength的定义:一个点周围的点中 ...

  4. codeforces 553 A Kyoya and Colored Balls

    这个题.比赛的时候一直在往dp的方向想,可是总有一个组合数学的部分没办法求, 纯粹组合数学撸,也想不到办法-- 事实上,非常显然.. 从后往前推,把第k种颜色放在最后一个,剩下的k球.还有C(剩余的位 ...

  5. Codeforces Round #309 (Div. 1)

    A. Kyoya and Colored Balls 大意: 给定$k$种颜色的球, 第$i$种颜色有$c_i$个, 一个合法的排列方案满足最后一个第$i$种球的下一个球为第$i+1$种球, 求合法方 ...

  6. Codeforces 599C Day at the Beach(想法题,排序)

    C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...

  7. Codeforces Round #332 (Div. 2) C. Day at the Beach 线段树

    C. Day at the Beach Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/599/p ...

  8. Codeforces Round #326 (Div. 2) D. Duff in Beach dp

    D. Duff in Beach Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/588/probl ...

  9. Codeforces Round #553 (Div. 2) D题

    题目网址:http://codeforces.com/contest/1151/problem/D 题目大意:给出n组数对,(ai , bi),调整这n组数对的位置,最小化 ∑(ai*( i -1)+ ...

随机推荐

  1. Java EE - Servlet 3.0 和 Spring MVC

    Table of Contents 前言 基于 Java 的配置 ServletContainerInitializer 动态配置 DispatcherServlet 和 ContextLoaderL ...

  2. python学习-- 理解'*','*args','**','**kwargs'

    刚开始学习Python的时候,对有关args,kwargs,和*的使用感到很困惑.相信对此感到疑惑的人也有很多.我打算通过这个帖子来排解这个疑惑(希望能减少疑惑). 让我们通过以下5步来理解: 1.  ...

  3. 博客笔记(blog notebook)

    1. 机器学习 2. NLP 3. code 实际好人 实际坏人 预测百分比 预测好人 \(p_GF^c(s_c\|G)\) \(p_BF^c(s_c\|B)\) \(F^c(s_c)\) 预测坏人 ...

  4. kNN的维数灾难与PCA降维

    主成分分析 PCA 协方差矩阵 假设我们有 \[ X = \begin{pmatrix}X_1\\X_2\\\vdots\\X_m\end{pmatrix}\in\mathbb{R}^{m\times ...

  5. LiveScript 函数

    The LiveScript Book     The LiveScript Book 函数 定义函数是非常轻量级的. 1.(x, y) -> x + y2.3.-> # an empty ...

  6. 在springmvc中使用@PathVariable时,应该注意点什么?

    导读:近来在做库存调剂系统时,我从前台到后台的传值方式,主要包括:1个,用@PathVariable或者@RequestParam从路径取:大于一个,用于更新或者添加操作的,我用的是表单实体传到后台: ...

  7. bootstrap 中dropmenu不起作用

    今天在使用bootstrap发现dropmenu一直不起作用,代码是从官网拷贝过来. 网上查找可以用的页面进行一点点的去除分析,发现竟然是顺序反了导致的. 在使用dropmenu时需要引入jquery ...

  8. 深入浅出mysql全文随笔

    进入mysql :mysql -uroot -p 1.DDL(Data Definition Languages)语句:数据定义语言 2.DML(Data Manipulation Language) ...

  9. Thrift & RPC介绍

    在学习thrift之前,先来看一下什么是rpc rpc远程过程调用,通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC采用客户机/服务器模式.请求程序就是一个客户机,而服务提供 ...

  10. 转 Django+Bootstrap练习--我的类博客系统开发

    转自: http://blog.sina.com.cn/s/blog_7e050dc80102w312.html 本文记录了一个类博客网站从无到有的搭建过程,同时也是我入门django以及再次入门前端 ...