移除盒子

给出一些不同颜色的盒子,盒子的颜色由数字表示,即不同的数字表示不同的颜色。
你将经过若干轮操作去去掉盒子,直到所有的盒子都去掉为止。每一轮你可以移除具有相同颜色的连续 k 个盒子(k >= 1),这样一轮之后你将得到 k*k 个积分。
当你将所有盒子都去掉之后,求你能获得的最大积分和。

示例 1:
输入:

[1, 3, 2, 2, 2, 3, 4, 3, 1]

输出:

23

解释:

[1, 3, 2, 2, 2, 3, 4, 3, 1]

----> [1, 3, 3, 4, 3, 1] (3*3=9 分)

----> [1, 3, 3, 3, 1] (1*1=1 分)

----> [1, 1] (3*3=9 分)

----> [] (2*2=4 分)

提示:盒子的总数 n 不会超过 100。

思路

通过用 dp[i][j][k] 来表示通过移除boxes[i, j]中的箱子,且此时在boxes[i]前有k个箱子的颜色与boxes[i]的颜色相同时,可以获得的最大分数。

此时,可以假设boxes数组的长度是n,可以将结果表示为:

dp[0][n - 1][0]

而且此时有如下的一些初始状态:

dp[i][i][k] = (k + 1) * (k + 1)

dp[i][j][k] = 0; //i < j

考虑一般的情况,对于 dp[i][j][k] 而言,考虑如何将其分解成子问题,以通过递推来求解。

上面说到,dp[i][j][k] 表示的是通过移除boxes[i, j]中的箱子,且此时在boxes[i]前面有k个与boxes[i]颜色相同的箱子。因此,对于第i个箱子,如果将其和前面的k个箱子一起移除,那么此时可以获得的分数,可以表示为:

(k + 1) * (k + 1) + dp[i + 1][j][0]

同时对于第i个箱子,还有其他的方案来移除,即可以将boxes[i, j]中的某一个箱子一起移除,这个箱子可以表示为boxes[m],此时boxes[m] == boxes[i]。此时可以获得的分数,可以表示为:

dp[i + 1][m - 1][0] + dp[m][j][k + 1]

而此时的 dp[i][j][k] 就是这些情况下可以取得的最大值。

因此可以写出状态转移方程如下:

temp1 = (k + 1) * (k + 1) + dp[i + 1][j][0]

temp2 = max(dp[i + 1][m - 1][0] + dp[m][j][k + 1]) //i <= m <= j && boxes[m] == boxes[i]

dp[i][j][k] = max(temp1, temp2)

class Solution {
public int removeBoxes(int[] boxes) {
int n = boxes.length;
int[][][] dp = new int[n][n][n];
return removeBoxesSub(boxes, 0, n - 1, 0, dp);
} private int removeBoxesSub(int[] boxes, int i, int j, int k, int[][][] dp) {
if (i > j) return 0;
if (dp[i][j][k] > 0) return dp[i][j][k]; int res = (k + 1) * (k + 1) + removeBoxesSub(boxes, i + 1, j, 0, dp); for (int m = i + 1; m <= j; m++) {
if (boxes[i] == boxes[m]) {
res = Math.max(res, removeBoxesSub(boxes, i + 1, m - 1, 0, dp) + removeBoxesSub(boxes, m, j, k + 1, dp));
}
} dp[i][j][k] = res;
return res;
}
}

Leetcode 546.移除盒子的更多相关文章

  1. Java实现 LeetCode 546 移除盒子(递归,vivo秋招)

    546. 移除盒子 给出一些不同颜色的盒子,盒子的颜色由数字表示,即不同的数字表示不同的颜色. 你将经过若干轮操作去去掉盒子,直到所有的盒子都去掉为止.每一轮你可以移除具有相同颜色的连续 k 个盒子( ...

  2. LeetCode:移除K位数字【402】

    LeetCode:移除K位数字[402] 题目描述 给定一个以字符串表示的非负整数 num,移除这个数中的 k 位数字,使得剩下的数字最小. 注意: num 的长度小于 10002 且 ≥ k. nu ...

  3. 前端与算法 leetcode 27.移除元素

    目录 # 前端与算法 leetcode 27.移除元素 题目描述 概要 提示 解析 算法 @(目录) # 前端与算法 leetcode 27.移除元素 题目描述 27.移除元素 概要 题目本身其实挺简 ...

  4. [LeetCode] Remove Boxes 移除盒子

    Given several boxes with different colors represented by different positive numbers. You may experie ...

  5. 546 Remove Boxes 移除盒子

    给定一些不同颜色的盒子,以不同的正整数表示.消去连续相同颜色的盒子,直到全部消除完毕为止.每一次消去可以得到k * k分(k为消去盒子的个数, k  >= 1).计算可以得到的最大得分.注意:盒 ...

  6. [Swift]LeetCode546. 移除盒子 | Remove Boxes

    Given several boxes with different colors represented by different positive numbers. You may experie ...

  7. Leetcode 546. Remove Boxes

    题目链接: https://leetcode.com/problems/remove-boxes/description/ 问题描述 若干个有序排列的box和它们的颜色,每次可以移除若干个连续的颜色相 ...

  8. 【LeetCode】移除元素(Remove Element)

    这道题是LeetCode里的第27道题. 题目描述: 给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原 ...

  9. Java实现 LeetCode 27 移除元素

    27. 移除元素 给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额 ...

随机推荐

  1. 倍增LCA

    前言 在做树上问题时,我们经常会遇到 \(LCA\)(最近公共祖先)问题.曾经的我遇到这类问题只会\(O(n)\)暴力求解,学了倍增\(LCA\),就可以\(O(logn)\)解决了. 简介 倍增\( ...

  2. 【洛谷4009】汽车加油行驶问题(SPFA乱搞)

    点此看题面 大致题意:给定一个\(N*N\)的方形网格,其中1表示这个格子有油库,0表示这个格子没油库,且汽车加满油可以行驶\(k\)条网格边.如果遇到油库必须加满油并花费\(A\)元,如果\(X\) ...

  3. VERITAS NETBACKUP运维手册(自制)

    ps:本文为目录.详情请点如下目录超链接 1 VERITAS NETBACKUP介绍 1.1 NBU基本概念 1.2 配置存储单元 1.3 配置备份策略(Policy) 1.4 配置NetBackup ...

  4. 设置和重置ssh key

    查看本地是否有已经生成好的ssh key $ cat ~/.ssh/id_rsa.pub 若有,先删除: $ cd ~ $ rm -rf .ssh 重新生成ssh key ssh-keygen -t ...

  5. android studio 安装以及遇到的一些问题

    1 安装 jkd ,版本一般是最新的,下怎么样的看一下自己电脑符合那种要求,可以去官网下 https://www.oracle.com/technetwork/java/javase/download ...

  6. 题解 P1137 【旅行计划】

    传送门 很显然,每个点的答案是它所有前驱节点的答案加1,即f[i]=max(f[i],f[j]+1); 考虑空间复杂度用邻接表存图,在拓扑排序同时DP就好了 #include<iostream& ...

  7. java对集合的操作,jxl操作excel

    http://www.cnblogs.com/epeter/p/5648026.html http://blog.sina.com.cn/s/blog_6145ed810100vbsj.html

  8. java调用摄像头了

    http://www.cnblogs.com/cnweiblog/p/4602207.html

  9. Websocket教程SpringBoot+Maven整合

    1.大话websocket及课程介绍 简介: websocket介绍.使用场景分享.学习课程需要什么基础 2.课程技术选型和浏览器兼容讲解 简介: 简单介绍什么是springboot.socketjs ...

  10. SQLSERVER存储过程的基本语法实例

    SQLSERVER存储过程的基本语法实例 SQLSERVER存储过程的基本语法实例 一.定义变量--简单赋值 declare @a intset @a=5 print @a --使用select语句赋 ...